

Logarithmic Regret in Feature-based Dynamic Pricing

Jianyu Xu and Yu-Xiang Wang University of California, Santa Barbara

Outline

- Problem Setup
- Summary of Results
 - EMLP algorithm
 - ONSP algorithm
 - Numerical Results
 - Lower Bounds
- Conclusions
 - Open Problem

2

Dynamic Pricing

Single-product Pricing

Feature-based Pricing

Problem Setting

• Online-fashion sales with a linear-noisy valuation model:

For t = 1, 2, ..., T:

- Feature $x_t \in \mathbb{R}^d$ is revealed;
- Customer generate a valuation $y_t = x_t^T \theta^* + N_t$ secretly (with a fixed θ^*);
- <u>Seller (we)</u> propose a price v_t;
- We get a reward $r_t = v_t \cdot 1_t$ where $1_t = 1[v_t \le y_t]$ is customer's decision.

- Noise distribution is known to us.
- Comparing with *bandits* feedback:
 - Boolean-censored
 - Half-space information

Performance Metric: Regret

In this setting, a regret is defined as:

$$\sum_{t=1}^{n} \max_{v_t^*} \mathbb{E}_{N_t \sim \mathbb{D}}[v_t^* \cdot 1(v_t^* \le x_t^\top \theta^* + N_t) | \theta^*] - \sum_{t=1}^{n} \mathbb{E}_{N_t \sim \mathbb{D}}[v_t \cdot 1(v_t \le x_t^\top \theta^* + N_t)]$$

Max expected reward of a seller knowing θ^* in advance.

Expected reward of our algorithm.

Our Contribution

• We achieve the optimal $O(d \log T)$ regret.

• in both **stochastic** and **adversarial** settings.

x_t's are drawn from **any** independent and identical **distributions** x_t's are selected by an oblivious **adversary** prior to all sales starting

- Why a logarithmic regret?
 - Key: knowing noise distribution \mathbb{D} .
 - We also prove an $\Omega(\sqrt{T})$ lower bound for now knowing \mathbb{D} .

Results on Linear Feature-based Pricing

Regret	Noise-free	Distribution-known Noise		Distribution-unknown Noise	
		Stochastic features	Adversarial features	Parametric log- concave family	Agnostic
Upper Bound	<i>O</i> (<i>d</i> log log <i>T</i>) [PLS 18]	$O\left(\min\left\{\frac{d\log T}{\lambda_{min}^2}, d\sqrt{T}\right\}\right) [JN19]$ $O(d\log T) [This paper]$	$O\left(d^{\frac{1}{3}}T^{\frac{2}{3}}\right)$ [CLPL16] $O(d \log T)$ [This paper]	$O(d\sqrt{T}) \text{ [JN19]}$ $O(poly(\log T))$ $[CLPL16, \text{KLPS20 (for}$ $\sigma = O\left(\frac{1}{T}\right) \text{ noise)]}$	Open
Lower Bound	$\Omega(d \log \log T)$ [KLO3]	Ω(d log T) [JN19]		$\Omega(\sqrt{T})$ [JN19, This paper (for Gaussian noise)]	$\Omega\left(T^{\frac{2}{3}}\right)$ [KL03]

7

EMLP: Epoch-based Max-Likelihood Pricing

- Key to solve this pricing problem:
 learning θ*.
 - Since noise distribution $\mathbb D$ is known.
- How to learn θ^* while exploiting $\hat{\theta}$?
 - A Max Likelihood Estimator (MLE)
 - A doubling-epoch design

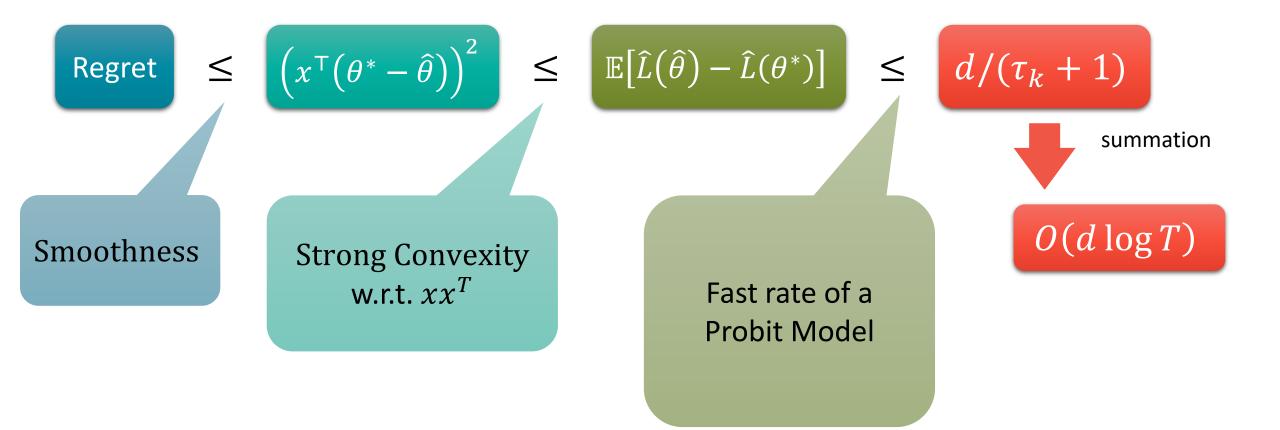
For $k = 1, 2, ..., \log T$: Epoch k. For $t = 1, 2, ..., \tau_k = 2^{k-1}$: Set $v_t = \operatorname{argmax}_v v \cdot (1 - F(v - x_t^\top \hat{\theta}_k));$ Observe feedback 1_t ; Construct negative log-likelihood $l_t(\theta)$: $l_t(\theta) := -\mathbb{1}_t \cdot \log (1 - F(v_t - x_t^\top \theta)) - (1 - \mathbb{1}_t) \log (F(v_t - x_t^\top \theta))$ MLE: $\hat{\theta}_{k+1} = \operatorname{argmin}_{\theta} \hat{L}_k(\theta)$, where $\hat{L}_k(\theta) = \frac{1}{\tau_k} \sum_{t=1}^{\tau_k} l_t(\theta);$

$$\hat{\theta}_1 \quad \hat{\theta}_2 \quad \hat{\theta}_3 \qquad \hat{\theta}_4 \qquad \hat{\theta}_5 \qquad \dots$$

$$t = 1 \quad 2 \quad 4 \qquad 8 \qquad 16 \qquad 32$$

Computer Science Department

EMLP: Regret Analysis



9

Computer Science Department

ONSP: Online-Newton-Step Pricing

• Notice:

 $Regret_t \leq \mathbb{E}[l_t(\hat{\theta}) - l_t(\theta^*)|x_t].$

- Why not directly reduce $\hat{L}(\hat{\theta})$?
- Without x_t's concentration
 allowing **adversarial** sequences.
- Exp-concave $\hat{L} \Rightarrow$ fast rate: Online Newton Step (ONS).
 - Suitable for (oblivious) adversarial objective functions.
 - Update θ_t at each round.

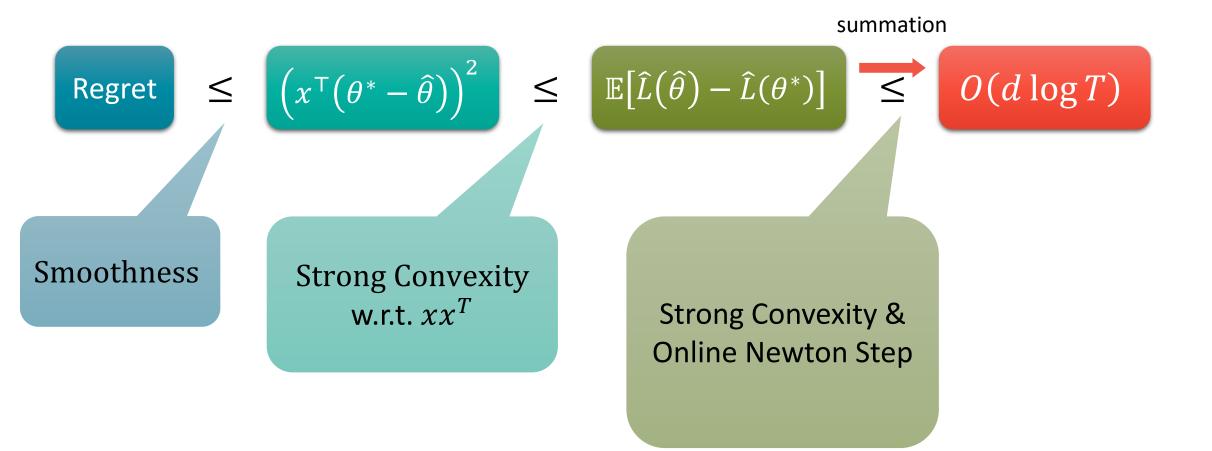
For t = 1, 2, ..., T: Set $v_t = \operatorname{argmax}_v v \cdot (1 - F(v - x_t^{\mathsf{T}} \theta_t));$ Observe feedback $1_t;$ Construct $l_t(\theta)$ and $\nabla_t \coloneqq \nabla l_t(\theta_t);$ Online Newton Step: $A_t = A_{t-1} + \nabla_t \nabla_t^{\mathsf{T}}; (A_0 = I_d)$ $\hat{\theta}_{t+1} = \theta_t - \frac{1}{2} A_t^{-1} \nabla_t$

• Projection:
$$\theta_{t+1} = \Pi^{A_t}(\hat{\theta}_{t+1})$$

UC SANTA BARBARA

10

ONSP: Regret Analysis

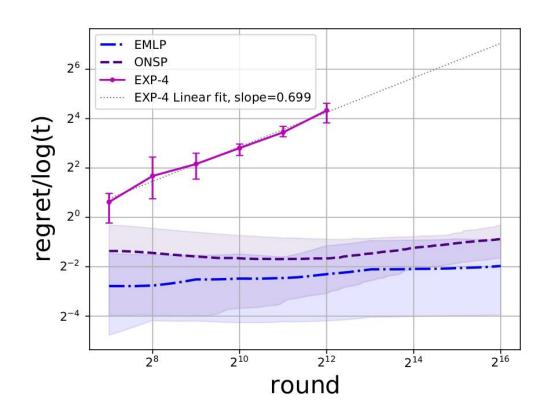


11

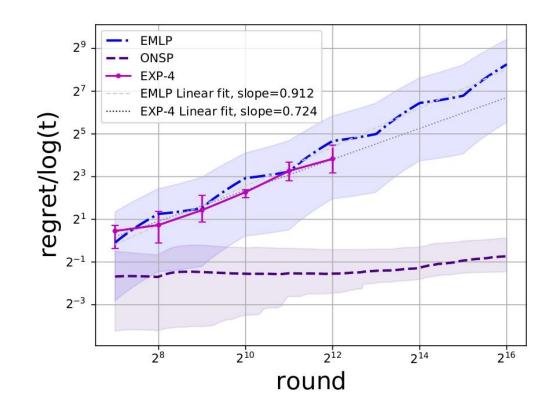
Computer Science Department

Numerical Result

Stochastic x_t 's



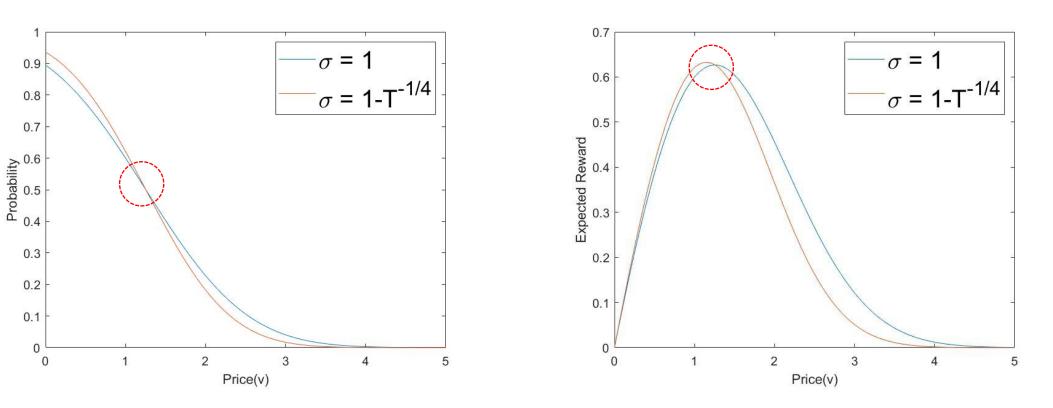
Adversarial x_t 's



$\Omega(\sqrt{T})$ lower bound for $\mathcal{N}(\mathbf{0}, \sigma)$ noise with unknown σ

Expected Boolean feedback: Hard to distinguish

Expected reward: Have to distinguish



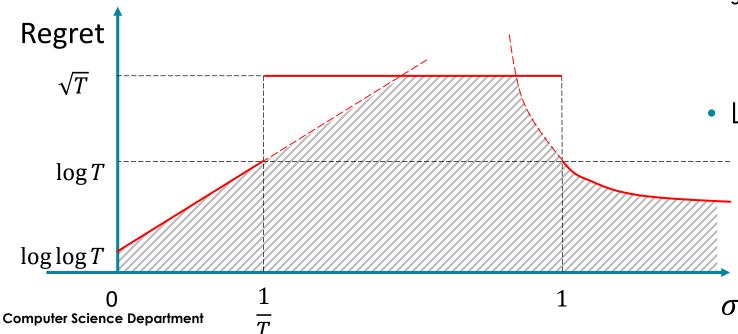
Conclusion

- Achieve an $O(d \log T)$ regret for stochastic/adversarial x_t 's. Comparing with existing results, we:
 - Get rid of distributional assumptions.
 - Exponentially improve the regret bound.

- Pricing is exponentially easier than contextual bandits.
 - As long as we **know** the noise distribution \mathbb{D} .
 - If not, then the regret is still $\Omega(\sqrt{T})$.

An Open Problem: Regrets for different σ

Noise σ	Regret	Trend	
0	$O(d \log \log T)$	/	
$\tilde{O}(1/T)$	$O(d^2 \log T)$	Increasing w.r.t. σ .	
$\left(\Omega(1/T), O(1)\right)$	$O\left(\sqrt{T}\right)$	(Not matching.)	
Θ(1)	$O(d \log T)$	Decreasing w.r.t. σ .	



• All existing algorithms for $\sigma = \Theta(1)$ suffer a "higher variance lower regret" phenomenon.

15

- Very counter-intuitive.
- Is this a necessity?
- No log-regret algorithm for "not-verysmall" variance noise yet.
 - What is the minimax regret?
- Look forward to a unified algorithm!