

Dynamic Pricing with Procedural and Substantive Fairness

Jianyu Xu University of California, Santa Barbara (Joint work with Dan Qiao and Yu-Xiang Wang)

Outline

Motivation

- Two fairness concerns
- Doubly-fair and profitable policies
- Problem Setup
 - Online pricing with two fairness concerns.
- Algorithm
 - A policy-elimination scheme
 - Regret and Unfairness bounds

References:

Xu, Jianyu, Dan Qiao, and Yu-Xiang Wang. "Doubly Fair Dynamic Pricing." AISTATS 2023.

Computer Science Department

Two Unfairnesses while Booking/Boarding Flight

- While booking a flight (on a 3rd –party website)...
 - Your colleague C gets a cheaper offer
 - Proposed prices are not equal
 - A procedural unfairness
- While boarding a flight ...
 - Your neighbor N paid at a cheaper price
 - Accepted prices are not equal
 - A substantive unfairness

Fixed-Price Policy: A straightforward solution

- Two fairness concerns:
 - Procedural unfairness: $U(p_A, p_B) := |\mathbb{E}[p_A] \mathbb{E}[p_B]|$
 - Substantive unfairness: $S(p_A, p_B) := |\mathbb{E}[p_A | A \text{ accept } p_A] \mathbb{E}[p_B | B \text{ accept } p_B]|$
- $p_A = p_B$ eliminate both unfairnesses.
 - Optimal price: $p^* = \arg \max_n p \cdot (D_A(p) * Q(A) + D_B(p) * Q(B))$
 - Q(A) and Q(B) are the portion of Group A and B.
- But can we do better?
 - ... if p_A and p_B are generally random.
 - Note: same distributions of p_A and p_B do not work for substantive fairness.

Computer Science Department

Example: Randomized Prices are More Profitable

• Consider the following example:

Acceptance Rate	\$0.625	\$0.7	\$1
<i>G</i> ₁ (30%)	3/5	1/2	1/2
G ₂ (70%)	4/5	4/5	1/2

- Let p₁ = p₂ to meet the fairnesses
 p* = arg max D₁(p) * 0.3 + D₂(p) * 0.7 = \$1
- If $p_1 = p_2 = \$1$, then
 - $D_1(p_1) = D_2(p_2) = 0.5$
 - Revenue = \$0.5
- However, if $p_1 \sim \mathbb{P}_1, p_2 \sim \mathbb{P}_2$ are **random**, then ...

Example: Randomized Prices are More Profitable

• Let
$$p_1 = \begin{cases} \$ \ 0.625 \ \left(\Pr = \frac{20}{29}\right) \\ \$ \ 1 \ \left(\Pr = \frac{9}{29}\right) \end{cases}$$
 and $p_2 = \begin{cases} \$ \ 0.7 \ \left(\Pr = \frac{25}{29}\right) \\ \$ \ 1 \ \left(\Pr = \frac{4}{29}\right) \end{cases}$

- Procedural fairness holds as $\mathbb{E}[p_1] = \mathbb{E}[p_2] = \frac{43}{58}$.
- Substantive fairness holds as $\mathbb{E}[p_1|buy] = \mathbb{E}[p_2|buy] = \frac{8}{11}$
- And profit increases !!
 - $\mathbb{E}[p_1 \cdot 1[p_1 \ accepted]] \cdot 0.3 + \mathbb{E}[p_2 \cdot 1[p_2 \ accepted]] \cdot 0.7$
 - = $\$\frac{74}{145} \approx \$0.5103 > \$0.5$.

Seek for Optimal Price Distribution

- Find optimal price \rightarrow optimal distribution of prices.
- Question 1: What is the best fair distribution?

$$\max_{\pi_1,\pi_2} R(\pi_1,\pi_2) \coloneqq \mathbb{E}_{p_1 \sim \pi_1}[p_1 \cdot D_1(p_1)] \cdot Q_1 + \mathbb{E}_{p_2 \sim \pi_2}[p_2 \cdot D_2(p_2)] \cdot Q_2$$

s.t. $U(\pi_1,\pi_2) = 0, \quad S(\pi_1,\pi_2) = 0$

Here $D_i(p)$ are the demand function of each group *i*.

- Question 2: How to **learn** them over time?
 - Unknown $D_1(p)$ and $D_2(p) \rightarrow$ Unknown $R(\pi_1, \pi_2)$ and $S(\pi_1, \pi_2)$
 - But we can learn from customers' buy/not buy decisions.
 - An online dynamic pricing problem.

Computer Science Department

UC SANTA BARBARA

UC SANTA BARBARA

Optimal Regret, Optimal Unfairness, and Optimal Regret-Unfairness Tradeoffs

- Our FPA algorithm guarantees ...
 - $\tilde{O}(\sqrt{T})$ regret
 - **0** procedural unfairness
 - $\tilde{O}(\sqrt{T})$ substantive unfairness
- To show the optimality, we also prove lower bounds of ...
 - $\Omega(\sqrt{T})$ regret
 - Necessarily unfair: $O(\sqrt{T})$ regret $\Rightarrow \Omega(\sqrt{T})$ substantive unfairness.

Conclusions and Potential Extensions

- Two fairness concerns:
 - <u>Procedural</u> and <u>Substantive</u> fairness
- Randomized prices might be doubly-fair and more profitable
- To solve the online fair pricing problem, we
 - Propose an FPA algorithm
 - Prove its regret and unfairness guarantees
 - Show the optimality of regret & unfairness & regret-unfairness tradeoffs.