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Two Unfairnesses while Booking/Boarding Flight

* While booking a ﬂlghT (on a 39 —party website). .. I Ii il I
* Your colleogue C gets a cheaper offer —y— o— ——
* Proposed prices are not equal
« A procedural unfairness

* While boarding a flight ...
* Your neighbor N paid at a cheaper price
« Accepted prices are not equal
* A substantive unfairness
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Fixed-Price Policy: A straighiforward solution

- Two fairness concerns:
« Procedural unfairness: U(pa, pg): = |E[ps] — El[pg]|
« Substantive unfairness: S(p4, pg): = |Elp4 |4 accept p,] — E|pg|B accept pgl|

* s = pg €liminate both unfairnesses.
« Optimal price: p* = arg mz?xp : (DA(p) * Q(A) + Dg(p) * Q(B))
* Q(4) and Q(B) are the portion of Group A and B.

» But can we do bettere
- ...ifp, and pg are generally random.
* Note: same distributions of p, and pg do not work for substantive fairness.
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Example: Randomized Prices are More Profitable

4 Expected

» Consider the following example:

Acceptance Rate | $0.625 | $0.7 | $1
G1 30%) 3/5 172 | 1/2
G2 (70%) 4/5 4/5 | 1/2

> Let p; = p, TO Mmeet the fairnesses
c pf = argmpaxDl(p) * 0.3+ D,(p) 0.7 =%1

* If p, = p, = $1, then

* Di(p1) = D(p;) = 0.5
- Revenue = $0.5

- However, it p; ~ P4, p, ~ P, are random,
then ...
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Example: Randomized Prices are More Profitable

( (
$0.625 (Pr=2)) $07 (Pr=2)
* Letpy =4 9 and p, =< A
| $1 (Pr=2) 81 (Pr=2)
* Procedural fairness holds as E[p,] = E[p,] = g rpected
Revenue
- Substantive fairess holds as E[p, |buy] = E[p,|buy] = ~

T er )
o . s Group 1 .”\ﬁt"/"/./ T
And profit increases !! — G /2
ge ra a

* ]E[P1 - 1[ps accepted]] 0.3+ IE[p2 -1[p, accepted]] 0.7 T Mesntedhver

_ ¢ /4 k=4/5 /_//
= §- ~ $0.5103 > $ 0.5,
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Seek for Optimal Price Distribution

* Find optimal price - optimal distribution of prices.
» Question 1: What is the best fair distribution?

Q%R(ﬂbﬂz) = Ep, ~m, [p1-D1(p)] - Q1 + Ep, 7, [p2 - D2 (p2)] - Q2
S.t. U(T[l, 7T2) - O, S(Tl:l, 7T2) =0

Here D;(p) are the demand function of each group i.

» Question 2: How to learn them over time?e
« Unknown D;(p) and D,(p) = Unknown R(my,m,) and S(mq, )
« But we can learn from customers’ buy/not buy decisions.
* An online dynamic pricing problem.

Computer Science Department UC SANTA BAR BARA



Online Pricing: Problem Setup . semne
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Algorithm: Epoch-based Policy Elimination

/Feasible policies (distribution pairs) in Epoch k \

[ Optimal J\
Policy *

Most Explorative Policies

(&
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Algorithm: Epoch-based Policy Elimination

Gather feedback and

Feasible policies (distribution pairs) in Epoch k solve constraint
optimization problems

A"

* Algorithm
FPA

Most Explorative Policies
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Algorithm: Epoch-based Policy Elimination

/Feasible policies (distribution pairs) in Epoch k \
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Algorithm: Epoch-based Policy Elimination

/Feasible policies (distribution pairs) in Epoch k \
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Algorithm: Epoch-based Policy EI|m|nqhon
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Optimal Regret, Optimal Unfairness, and

Optimal Regret-Unfairness Tradeoffs

* Our FPA algorithm guarantees ...
- O(VT) regret
» 0 procedural unfairness
- 0(NT) substantive unfaimess

* To show the optimality, we also prove lower bounds of ...

» Q(VT) regret
- Necessarily unfair: 0(VT) regret = Q(+T) substantive unfairness.
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Conclusions and Potential Extensions

 Two fairness concerns:

« Procedural and Substantive fairness

« Randomized prices might be doubly-fair and more profitable

» To solve the online fair pricing problem, we
* Propose an FPA algorithm
* Prove its regret and unfairness guarantees

« Show the optimality of regret & unfairness & regret-unfairness tradeoffs.
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