Dynamic Pricing with Procedural and Substantive Fairness

Jianyu XU
University of California, Santa Barbara
(Joint work with Dan Qiao and Yu-Xiang Wang)

Outline

- Motivation
- Two fairness concerns
- Doubly-fair and profitable policies
- Problem Setup
- Online pricing with two fairness concerns.
- Algorithm
- A policy-elimination scheme
- Regret and Unfairness bounds

References:
Xu, Jianyu, Dan Qiao, and Yu-Xiang Wang. "Doubly Fair Dynamic Pricing." AISTATS 2023.

Two Unfairnesses while Booking/Boarding Flight

- While booking a flight (on a $3^{\text {rd }}$-party website)...
- Your colleague C gets a cheaper offer
- Proposed prices are not equal
- A procedural unfairness
- While boarding a flight ...
- Your neighbor N paid at a cheaper price
- Accepted prices are not equal
- A substantive unfairness

Fixed-Price Policy: A straightforward solution

- Two fairness concerns:
- Procedural unfairness: $U\left(p_{A}, p_{B}\right):=\left|\mathbb{E}\left[p_{A}\right]-\mathbb{E}\left[p_{B}\right]\right|$
- Substantive unfairness: $S\left(p_{A}, p_{B}\right):=\mid \mathbb{E}\left[p_{A} \mid A\right.$ accept $\left.p_{A}\right]-\mathbb{E}\left[p_{B} \mid B\right.$ accept $\left.p_{B}\right] \mid$
- $p_{A}=p_{B}$ eliminate both unfairnesses.
- Optimal price: $p^{*}=\arg \max _{p} p \cdot\left(D_{A}(p) * Q(A)+D_{B}(p) * Q(B)\right)$
- $Q(A)$ and $Q(B)$ are the portion of Group A and B.
- But can we do better?
- ... if p_{A} and p_{B} are generally random.
- Note: same distributions of p_{A} and p_{B} do not work for substantive fairness.

Example: Randomized Prices are More Profitable

- Consider the following example:

Acceptance Rate	$\$ 0.625$	$\$ 0.7$	$\$ 1$
$G_{1}(30 \%)$	$3 / 5$	$1 / 2$	$1 / 2$
$G_{2}(70 \%)$	$4 / 5$	$4 / 5$	$1 / 2$

- Let $p_{1}=p_{2}$ to meet the fairnesses
- $p^{*}=\arg \max _{p} D_{1}(p) * 0.3+D_{2}(p) * 0.7=\$ 1$

- If $p_{1}=p_{2}=\$ 1$, then
- $D_{1}\left(p_{1}\right)=D_{2}\left(p_{2}\right)=0.5$
- Revenue $=\$ 0.5$
- However, if $p_{1} \sim \mathbb{P}_{1}, p_{2} \sim \mathbb{P}_{2}$ are random, then ...

Example: Randomized Prices are More Profitable

- Let $p_{1}=\left\{\begin{array}{c}\$ 0.625\left(\operatorname{Pr}=\frac{20}{29}\right) \\ \$ 1\left(\operatorname{Pr}=\frac{9}{29}\right)\end{array}\right.$ and $p_{2}=\left\{\begin{array}{c}\$ 0.7\left(\operatorname{Pr}=\frac{25}{29}\right) \\ \$ 1\left(\operatorname{Pr}=\frac{4}{29}\right)\end{array}\right.$
- Procedural fairness holds as $\mathbb{E}\left[p_{1}\right]=\mathbb{E}\left[p_{2}\right]=\frac{43}{58}$.
- Substantive fairness holds as $\mathbb{E}\left[p_{1} \mid b u y\right]=\mathbb{E}\left[p_{2} \mid b u y\right]=\frac{8}{11}$
- And profit increases !!
- $\mathbb{E}\left[p_{1} \cdot 1\left[p_{1}\right.\right.$ accepted $\left.]\right] \cdot 0.3+\mathbb{E}\left[p_{2} \cdot 1\left[p_{2}\right.\right.$ accepted $\left.]\right] \cdot 0.7$
- $=\$ \frac{74}{145} \approx \$ 0.5103>\$ 0.5$.

Seek for Optimal Price Distribution

- Find optimal price \rightarrow optimal distribution of prices.
- Question 1: What is the best fair distribution?

$$
\begin{gathered}
\max _{\pi_{1}, \pi_{2}} R\left(\pi_{1}, \pi_{2}\right):=\mathbb{E}_{p_{1} \sim \pi_{1}}\left[p_{1} \cdot D_{1}\left(p_{1}\right)\right] \cdot Q_{1}+\mathbb{E}_{p_{2} \sim \pi_{2}}\left[p_{2} \cdot D_{2}\left(p_{2}\right)\right] \cdot Q_{2} \\
\text { s.t. } U\left(\pi_{1}, \pi_{2}\right)=0, \quad S\left(\pi_{1}, \pi_{2}\right)=0
\end{gathered}
$$

Here $D_{i}(p)$ are the demand function of each group i.

- Question 2: How to learn them over time?
- Unknown $D_{1}(p)$ and $D_{2}(p) \rightarrow$ Unknown $R\left(\pi_{1}, \pi_{2}\right)$ and $S\left(\pi_{1}, \pi_{2}\right)$
- But we can learn from customers' buy/not buy decisions.
- An online dynamic pricing problem.

Online Pricing: Problem Setup

At time $t+1$:

Decision
$1_{t+1} \sim \operatorname{Ber}\left(D_{i_{t+1}}\left(p_{t+1}\right)\right)$

Algorithm: Epoch-based Policy Elimination

Run Feasible \&
Explorative policies

Running policies for Epoch k

Algorithm: Epoch-based Policy Elimination

Gather feedback and solve constraint optimization problems

Algorithm: Epoch-based Policy Elimination

Feasible policies (distribution pairs) in Epoch k

Profitable

policies

Algorithm: Epoch-based Policy Elimination

Algorithm: Epoch-based Policy Elimination

Feasible policies set
for Epoch $k+1$

Feasible policies (distribution pairs) in Epoch k

Running policies for
Epoch $k+1$

Optimal Regret, Optimal Unfairness, and Optimal Regret-Unfairness Tradeoffs

- Our FPA algorithm guarantees ...
- $\tilde{O}(\sqrt{T})$ regret
- 0 procedural unfairness
- $\tilde{O}(\sqrt{T})$ substantive unfairness
- To show the optimality, we also prove lower bounds of ...
- $\Omega(\sqrt{T})$ regret
- Necessarily unfair: $\boldsymbol{O}(\sqrt{\boldsymbol{T}})$ regret $\Rightarrow \boldsymbol{\Omega}(\sqrt{\boldsymbol{T}})$ substantive unfairness.

Conclusions and Potential Extensions

- Two fairness concerns:
- Procedural and Substantive fairness
- Randomized prices might be doubly-fair and more profitable
- To solve the online fair pricing problem, we
- Propose an FPA algorithm
- Prove its regret and unfairness guarantees
- Show the optimality of regret \& unfairness \& regret-unfairness tradeoffs.

UC SANTA BARBARA

