

Linear Contextual Dynamic Pricing

Jianyu Xu University of California, Santa Barbara

Outline

- Problem Settings
- A Linear Valuation (LV) Problem
- A Linear Policy (LP) Problem
- Open Problem

References:

[XW21] Xu, Jianyu, and Yu-Xiang Wang. "Logarithmic regret in feature-based dynamic pricing." *in NeurIPS 2021* [spotlight presentation].
[XW22] Xu, Jianyu, and Yu-Xiang Wang. "Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise." *in AISTATS 2022* [oral presentation].

These are joint works with Prof. Yu-Xiang Wang

UC SANTA BARBARA

Computer Science Department

Problem Setting

• Online-fashion contextual pricing:

For t = 1, 2, ..., T:

- Feature $x_t \in \mathbb{R}^d$ is revealed;
- A customer generates a valuation y_t secretly;
- The seller (we) proposes a price v_t ;
- Customer makes a decision $1_t = 1[v_t \le y_t]$;
- We receive a reward $r_t = v_t \cdot 1_t$.
- We never observe customer's valuation!

Compare with Contextual Bandits

Contextual bandits:

In Comparison, pricing has ...

\$999.99

Performance Metric: Regret

A regret is defined as:

$$\sum_{t=1}^{n} \max_{v_t^*} \mathbb{E}[v_t^* \cdot 1(v_t^* \le y_t) | x_t] - \sum_{t=1}^{n} \mathbb{E}[v_t \cdot 1(v_t \le y_t) | x_t]$$

Max expected reward of a seller knowing optimal price in advance.

Expected reward of our algorithm.

Larger regret \rightarrow Worse performance !

Linear Valuation (LV)

- Customer's valuation y_t is ...
 - Linear (on feature x_t), and
 - Noisy (added as N_t)

$$y_t = x_t^{\mathsf{T}} \theta^* + N_t$$

- We assume ...
 - θ^* is **fixed** and **unknown**;
 - *N_t*'s are **i.i.d**.

Computer Science Department

LV: Knowledge vs Regret

LV: O(d logT) Regrets for Known Noise Distributions [XW21]

- We achieve the optimal $O(d \log T)$ regret.
 - in both **stochastic** and **adversarial** settings.

- Why a logarithmic regret?
 - Key: knowing noise distribution \mathbb{D} .
 - Prove an $\Omega(\sqrt{T})$ lower bound for $\mathcal{N}(0, \sigma^2)$ noise with unknown σ .

Computer Science Department

Numerical Result – LV with Known Gaussian Noise

Stochastic x_t 's

Adversarial x_t 's

UC SANTA BARBARA

Computer Science Department

LV: $\widetilde{O}(T^{\frac{3}{4}})$ Regret for Unknown Noise Distributions [XW22]

We do **NOT** have ...

- Knowledge on noise models (besides being bounded).
- Assumptions on noise distributional functions.

In [XW22], we ...

- Propose a contextual-bandit-based algorithm: D2-EXP4.
- Half-space feedback⇒ Half-Lipschitz
- Achieve $\tilde{O}(T^{\frac{3}{4}} + d^{\frac{1}{2}}T^{\frac{5}{8}})$ regret.
- Prove an $\widetilde{\Omega}(T^{\frac{2}{3}})$ regret lower bound.
 - Works even for Lipschitz noise CDF.

UC SANTA BARBARA

Computer Science Department

Linear Policy (LP): Compromise for Agnostic [XW22]

No assumptions on valuation y_t at all!

- y_t can be chosen *arbitrarily*.
- Not possible to learn the $x_t \rightarrow y_t$ model:
 - even not necessarily exists!

Computer Science Department

What if we only compete with **linear** pricing policies?

- $\eta^* = \arg \max_{\eta} \mathbb{E}\left[\sum_{t=1}^T r_t(v_t) | v_t = x_t^\top \eta\right]$
- Regret:= $\mathbb{E}[\sum_{t=1}^{T} r_t(x_t^{\top} \eta^*) \sum_{t=1}^{T} r_t]$
- This is a **Linear Policy** (LP) problem!
- Can we achieve sub-linear regret?

UC SANTA BARBARA

11

Linear Policy (LP): $\tilde{O}(T^{\frac{2}{3}}d^{\frac{1}{3}})$ Optimal Regret [XW22]

- We design an algorithm: Linear-EXP4.
 - Idea: discretization on action & parameter spaces.
- We achieve a $\tilde{0}(T^{\frac{2}{3}}d^{\frac{1}{3}})$ optimal regret.
- We prove a matching $\widetilde{\Omega}(T^{\frac{2}{3}}d^{\frac{1}{3}})$ regret lower bound.

UC SANTA BARBARA

12

- For Linear Valuation problem $(y_t = x_t^T \theta^* + N_t)$, we achieve:
 - O(d log T) optimal regret for **known** noise distributions.
 - $\tilde{O}\left(T^{\frac{3}{4}} + T^{\frac{5}{8}}d^{\frac{1}{2}}\right)$ regret for **fully agnostic** noise distribution.
- For Linear Policy problem, we achieve $\tilde{O}(T^{\frac{2}{3}}d^{\frac{1}{3}})$ optimal regret.

Open Problem: Regrets over different σ (on LV with known noise distributions)

Noise σ	Regret	Trend	•
0	$O(d \log \log T)$	/	
$\tilde{O}(1/T)$	$O(d^2\log T)$	Increasing w.r.t. σ .	
$\left(\Omega(1/T), O(1)\right)$	$O(\sqrt{T})$	(Not matching.)	
Θ(1)	$O(d\log T)$	Decreasing w.r.t. σ .	•
Regret \sqrt{T}			•
log T			
	1	1	
U omputer Science Department	$+ \frac{1}{T}$	L	0

• All existing algorithms for $\sigma = \Theta(1)$ suffer a "higher variance lower regret" phenomenon.

14

- Very counter-intuitive.
- Is this a necessity?
- No log-regret algorithm for "not-verysmall" variance noise yet.
 - What is the minimax regret?
- Look forward to a unified algorithm!

Reference

- [KL03] The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In FOCS-03.
- [CLPL16] Feature-based dynamic pricing. In EC-16.
- [PLS18] Contextual search via intrinsic volumes. In FOCS-18.
- [JN19] Dynamic pricing in high-dimensions. JMLR.
- [XW21] Logarithmic regret in feature-based dynamic pricing. In NeurIPS-21.
- [WCSL21] Multimodal dynamic pricing. Management Science.
- [LS21] Distribution-free contextual dynamic pricing. arXiv preprint.
- [FGY22] Policy optimization using semiparametric models for dynamic pricing. JASA.
- [WTL21] On Dynamic Pricing with Covariates. arXiv preprint arXiv:2112.13254.
- [BK21] Personalized dynamic pricing with machine learning: High-dimensional features and heterogeneous elasticity. Management Science.
- [XW22] Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise. In AISTATS-22.
 Computer Science Department