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Problem Setting

» Online-fashion contextual pricing:

Fort=1,2,..,T:

* Feature x, € R is revealed;

A customer generates a valuation y, secretly;

The seller (we) proposes a price v;;

Customer makes a decision 1; = 1[v; < y,];

* We receive a reward 1y = v; - 1;.

- We never observe customer’'s valuation!
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Compare with Contextual Bandits

Contextual bandits:

|
Input:(Action)set A i
Fort =1,2,...,T: i
* Context x; € R% is revealed; :
* Agent (we) takes an action a; € ILfl;

* Environment returns a reward rt:

$199.00, accepted

$0.00 A

Customers would have accepted these prices.

@nivpna S —

————~ Half-space feedback

In Comparison, pricing has ...
« Similarities:
* Online-learning process

« Partfial-information feedback

* Interactive decisions

« Differences:

———— |nfinite Actions & Non-continuous Reward

~ Customers would have declined these prices.
' "~ $999.99

$399.00, declined



Performance Metric: Regret

A regret Is defined as:

> maxE[v; - 1(v; < y)lx] = ) Elve - 1(ve < y)lx]
t

n n
t=1 t=1

Max expected reward of a
seller knowing optimal price
in advance.

Expected reward of our algorithm.

Larger regret = Worse performance !
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Linear Valuation (LV)

« Customer’s valuation y; is ...

* Linear (on feature x;), and
* Noisy (added as N;)
yt — x;-rg* ~+ Nt
- We assume ...

« 0* is fixed and unknown;

* N,'s are i.i.d.
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LV: Knowledge vs Regret

-@- Upper bounds

Lower bounds
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LV: O(d logT) Regrets for Known Noise Distributions xw21j

- We achieve the optimal 0(d log T) regret.

*in bo’rhuand [adversarial} settings.

x¢'s are drawn from any x;’s are selected by an

independent and identical oblivious adversary prior to
distributions (i.i.d) all sales starting

[ Algorithm:EMLP | | Algorithm: ONSP |

- Why a logarithmic regrete
« Key: knowing noise distribution D.

- Prove an Q(VT) lower bound for (0, a2) noise with unknown a.
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Numerical Result - LV with Known Gaussian Noise

Stochastic x;'s
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Adversarial x;’s

9 | =+ EMLP
== ONSP
—e— EXP-4

20 EMLP Linear fit, slope=0.912

regret/log(t)

~~~~~~~~ EXP-4 Linear fit, slope=0.724
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N 3 10
LV: O(T+) Regret for Unknown Noise Distributions xw2z

In [XW22], we ...

Linear
Valuation

Unknown
Noise * Propose a contextual-bandit-based

Model Distribution algorithm: D2-EXP4.

| * Half-space feedback= Half-Lipschitz

3 1 5
3 o i 218 >Tg
[ 0(T%) Achieve 0(T4 + dsz) regret.
Regret

(.2
* Prove an Q(Ts) regret lower bound.

« Works even for Lipschitz noise CDF.
We do NOT have ...

* Knowledge on noise models (besides being bounded).

e Assumptions on noise distributional functions.
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Linear Policy (LP): Compromise for Agnostic jxwzz

/

<

Agnostic Unknown
Valuation Noise
\Y[oJe<] Distribution
| Linear Pricing Policy |

|

Sub-Linear

Regret?

/

No assumptions on valuation y, at all!

y¢ can be chosen arbitrarily.

Not possible to learn the x; = y; model:

e even not necessarily exists!
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What if we only compete with linear
pricing policies?

et = arg max EXTore(w)|ve = x{n ]

* Regret:= E[Y{-; e (x{ ") — Xf=1 7]
* This is a Linear Policy (LP) problem!

- Can we achieve sub-linear regret?
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Linear Policy (LP): O(Tsds) Optimal Regret xwz

* We design an algorithm: Linear-EXP4. 2o Ll lnesr . clope0.667436
« |dea: discretization on action & parameter
spaces. i
)
Yo
. We achieve a 0(T3d3) optimalregret. @
25
« We prove a matching Q(Tsds) regret ]
lower bound. 21 ]
2 2 2 212 213 2 2 2
T
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[ ]
CO"CIUS'O“ _ Linear Valuation —
Known Noise
- EES-

i Bl Adversarial
Make Linear Use | SNeh
: Unknown Noise I

— Linear Policy (LP) — Linear-EXP4

- For Linear Valuation problem (y, = x/ 6* + N,), we achieve:

of Contexts

* 0(dlogT) optimal regret for known noise distributions.

5 1

- 3
. o(rs + Tadz) regret for fully agnostic noise distribution.

2 1
 For Linear Policy problem, we achieve O(TEdE) optimal regret.
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Open Problem: Regrets over different o H

(on LV with known noise distributions)

a “higher variance lower regret”

0 O(dloglogT) / phenomenon.
* Very counter-intuitive.

0(1/T) 0(d?logT) Increasing w.r.t. o. . 15 this @ necessity?
(Q(l/T), 0(1)) ()(\/T) (Not matching.)
O(1) O(dlogT) Decreasing w.r.t. o. - No log-regret algorithm for “not-very-
t small” variance noise yet.
Regret

) « What is the minimax regrete

| emstosumtessmin

logT

loglog T

—
_ b
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