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Basic Problem Setting

• An online-fashion sales:

• Comparing with contextual bandits: 

• Continuous action and hypothesis spaces

For 𝑡 = 1,2, … , 𝑇:

• Feature 𝑥𝑡 ∈ ℝ𝑑 is revealed;

• Customer generates a valuation 𝑦𝑡 secretly;

• Seller (we) propose a price 𝑣𝑡;

• Customer makes a decision 1t = 1 𝑣𝑡 ≤ 𝑦𝑡 ;

• We get a reward 𝑟𝑡 = 𝑣𝑡 ⋅ 1t.
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Problem Modeling

• To make use of 𝑥𝑡, we consider two problem models:

• Linear Policy (LP)

• 𝑥𝑡 , 𝑦𝑡 are arbitrarily selected;

• Compete with 𝑣𝑡
∗ = 𝑥𝑡

⊤𝛽∗ for a best fixed 𝛽∗.

• Linear Valuation (LV)

• 𝑦𝑡 = 𝑥𝑡
⊤𝜃∗ +𝑁𝑡, where 𝜃∗ ∈ ℝ𝑑 is fixed and 𝑁𝑡 ∼𝑖.𝑖.𝑑. 𝔻 ⊆ −1,1 ;

• Compete with 𝑣𝑡
∗ = argmax

𝑣
𝑣 ⋅ Pr 𝑣 ≤ 𝑦𝑡 .

• LP models our strategy; LV models the nature.
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LP versus LV: Regret

• LP compete with the best fixed linear policy:

𝑅𝑒𝑔𝑟𝑒𝑡𝐿𝑃 ≔ max
𝛽



𝑡=1

𝑇

𝑥𝑡
⊤𝛽 ⋅ 𝔼 𝑥𝑡

⊤𝛽 ≤ 𝑦𝑡 − 𝑥𝑡
⊤𝛽𝑡 ⋅ 𝔼[𝑥𝑡

⊤𝛽𝑡 ≤ 𝑦𝑡]

• LV compete with the best price at each time

𝑅𝑒𝑔𝑟𝑒𝑡𝐿𝑉 ≔

𝑡=1

𝑇

max
𝑣

𝑣 ⋅ Pr 𝑣 ≤ 𝑥𝑡
⊤𝜃∗ +𝑁𝑡|𝜃

∗, 𝔻 − 𝑣𝑡 ⋅ Pr 𝑣𝑡 ≤ 𝑥𝑡
⊤𝜃∗ + 𝑁𝑡|𝜃

∗, 𝔻
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Existing Results
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Problem Linear Valuation Linear Policy

Noise 
Assumption

Noise-free Known,
Log-concave

Parametric Agnostic,
Bounded

Upper Regret 
Bound

𝑂 𝑑 log log 𝑇
[PLS18]

𝑂 𝑑 log𝑇
[XW21]

෨𝑂 𝑑 𝑇

[WTL21]
෨𝑂(𝑇

3
4 + 𝑑

1
2𝑇

5
8)

[This Work]

෨𝑂(𝑑
1
3𝑇

2
3)

[This Work]

Lower Regret 
Bound

Ω 𝑑 log log 𝑇
[KL03]

Ω 𝑑 log𝑇
[JN19]

Ω 𝑑 𝑇

[BK21]
෨𝛺(𝑇

2
3)

[KL03, This Work]

෨𝛺(𝑑
1
3𝑇

2
3)

[This Work]
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EXP-4 [ACBFS02]: a Contextual Bandit Algorithm

• Input: Time horizon 𝑇, action set 𝒦, policy 

set Π; features 𝑥𝑡 at each time

• Output: action 𝑎𝑡 at each time

• approaching optimal policy 𝜋∗

• with 𝑂 𝑇 𝒦 log Π regret

• Only works for finite action/policy sets.

• Discretize the price/hypothesis space.
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Discretization: Action Space

• Split the price range into size-𝛾 segments.

• Action set consists of all end points
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Discretization: Policy Space (1) --Vector

• Discretize the policy vector space into grids:

• Cut into size-Δ𝑑 grids, where Δ =
𝛾

𝑑
.

• Total number of 𝛽’s: 
1

Δ

𝑑
=

𝑑

𝛾

𝑑
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Linear-EXP4: Algorithm for LP

• Action 𝒦 = 𝑘 ⋅ 𝛾, 𝑘 = 0,1, … , 1 𝛾

• Policy Π = {𝜋𝛽: 𝜋𝛽 𝑥 = 𝑥⊤𝛽 𝛾}, with 𝛽 ∈ size-Δ𝑑 grids.

• “𝛾-flooring”: 𝑎 𝛾 =
𝑎

𝛾
⋅ 𝛾.

• Let 𝛾 = 𝑑
1

3𝑇−
1

3, and the regret = ෨𝑂 𝑑
1

3𝑇
2

3 .

• Notice that 𝒦 = 𝑂
1

𝛾
, Π =

𝑑

𝛾

d

, 

• matching the discretization error 𝑂 𝑇𝛾 .
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Discretization: Policy Space (2)  -- Distribution

• In LV, recall: 𝑦𝑡 = 𝑥𝑡
⊤𝜃∗ + 𝑁𝑡

• with 𝜃∗ ∈ ℝ𝑑 fixed and 𝑁𝑡 ∼ 𝔻.

• If we know 𝜃∗ and 𝔻, then …

𝜋∗ 𝑥 = argmax
𝑣

𝑣 ⋅ Pr 𝑣 ≤ 𝑦𝑡 = argmax
𝑣

𝑣 ⋅ 1 − 𝐹𝔻 𝑣 − 𝑥𝑡
⊤𝜃∗

• 𝐹𝔻 is the CDF of 𝔻.

• Idea: policy built on both መ𝜃 and 𝐹𝔻.
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Discretization: Policy Space (2)  -- Distribution

• 3 steps to discretize 𝐹𝔻: Griding, Flooring, Connecting

• Total number of discrete CDF: 𝑂 2
3

𝛾

• A “balls-in-bins” counting model
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D2-EXP4: Algorithm for LV

• Still, we play the EXP-4:

• Action 𝒦 = 𝑘 ⋅ 𝛾, 𝑘 = 0,1,… , 1 𝛾

• Policy Π = {𝜋 𝑥; 𝜃, 𝐹 ≔ argmax
𝑣

𝑣 ⋅ 1 − 𝐹 𝑣 − 𝑥⊤ 𝜃 − 𝐵 + 1 𝛾}

• መ𝜃 ∈ size-Δ𝑑 grids, 𝐹 ∈ discrete CDF family.

• Subtracting 𝐵 + 1 𝛾 for more chance to succeed.

• Choose 𝛾 = 𝑇−
1

4, and 𝑅𝑒𝑔𝑟𝑒𝑡 = ෨𝑂(𝑇
3

4 + 𝑑
1

2𝑇
5

8).
• Matching the discretization error 𝑂 𝑇𝛾 .

• Prove a ෩Ω(𝑇
2

3) lower bound.
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Property: Half-Lipschitzness

• Noise distribution is not necessarily Lipschitz.

• Probability of acceptance never increases

𝑅 𝑣 = 𝑣 ⋅ Pr 𝑣 ≤ 𝑦𝑡

≥ 𝑣 ⋅ Pr 𝑣 + 𝛿 ≤ 𝑦𝑡

≥ 𝑣 + 𝛿 ⋅ Pr 𝑣 + 𝛿 ≤ 𝑦𝑡 − 𝛿

= 𝑅 𝑣 + 𝛿 − 𝛿

• Expected reward 𝑅(𝑣) increament  ≤ Price 𝑣 increament

• We call this property a “half-Lipschitz”.

• Therefore, we only suffer 𝛿-more regret (discretization error) by choosing a 

𝛿-conservative price, i.e. choosing ො𝑣 − 𝛿 .

• This enables us to discretizing the action/policy spaces
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Numerical Experiments on Linear-EXP4

• A log-log plot of regret

• 𝑟-slope indicates 𝑂 𝑇𝑟 regret.

• 2/3 in theory, 0.67 in practice

• D2-EXP4 consumes EXP-time!

• Code released
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Open Problem: Regret Gap of LV

• Our ෨𝑂(𝑇
3

4) result holds for any noise CDF, w/ or w/o continuity.

• For 𝑚𝑡ℎ-order smooth CDF, [FGY21] shows a ෨𝑂(𝑇
2𝑚+1

4𝑚−1) regret.

• Non-trivial for 𝑚 ≥ 2.

• Still unmatched with the ෩O(𝑇
𝑚+1

2𝑚+1) lower bound presented in [WCSL21]

• [LS21] achieves a ෨𝑂(𝑇
2

3
∨ 1−𝛼 ) regret by assuming a good estimator 𝜃𝑡: || 𝜃𝑡 − 𝜃∗||2 =

𝑂(𝑡−𝛼) with logged data.

• The existence is unknown and is highly non-trivial.
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