

Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise

Jianyu Xu and Yu-Xiang Wang University of California, Santa Barbara

Outline

- Basic Setting
- Problem Modeling
 - Linear Policy (LP)
 - Linear Valuation (LV)
- Summary of Results
- Algorithm Design
 - Linear-EXP4 for LP
 - D2-EXP4 for LV
 - Half-Lipschitzness
- Numerical Results
- Open Problem

Dynamic Pricing

Single-product Pricing

Feature-based Pricing

Basic Problem Setting

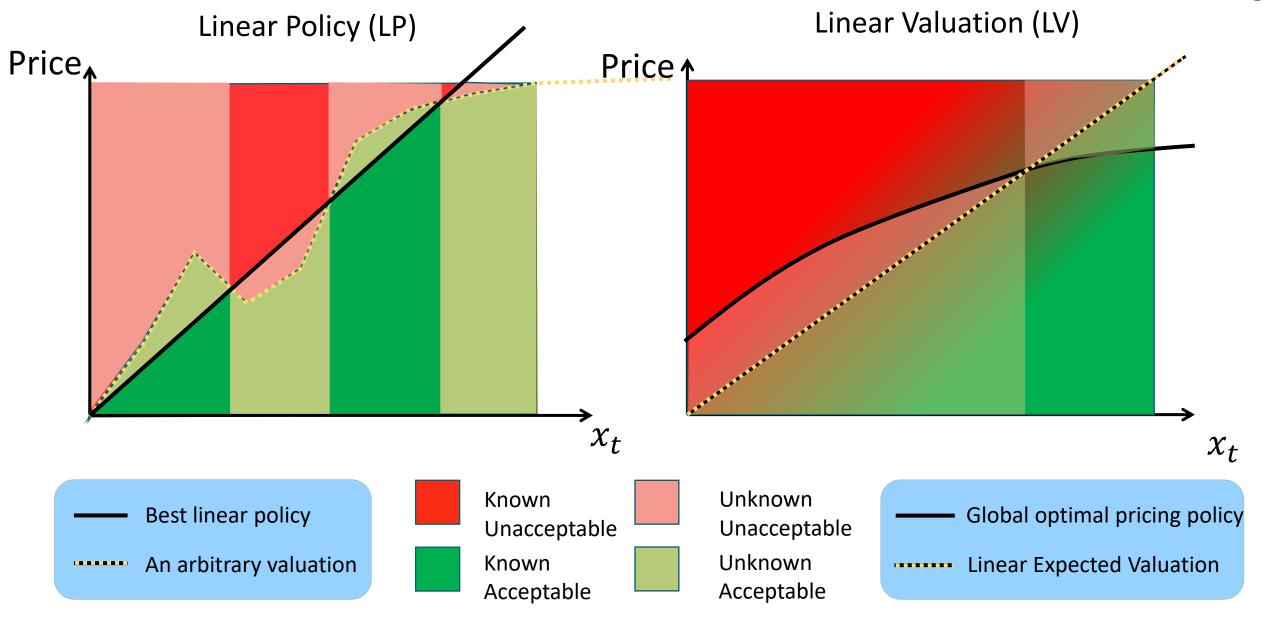
An online-fashion sales:

```
For t = 1, 2, ..., T:
```

- Feature $x_t \in \mathbb{R}^d$ is revealed;
- Customer generates a valuation y_t secretly;
- Seller (we) propose a price v_t ;
- Customer makes a decision $1_t = 1[v_t \le y_t]$;
- We get a reward $r_t = v_t \cdot 1_t$.
- Comparing with contextual bandits:
 - Continuous action and hypothesis spaces

Problem Modeling

- To make use of x_t , we consider two problem models:
 - Linear Policy (LP)
 - (x_t, y_t) are arbitrarily selected;
 - Compete with $v_t^* = x_t^T \beta^*$ for a best fixed β^* .
 - Linear Valuation (LV)
 - $y_t = x_t^{\mathsf{T}} \theta^* + N_t$, where $\theta^* \in \mathbb{R}^d$ is fixed and $N_t \sim_{i.i.d.} \mathbb{D} \subseteq [-1,1]$;
 - Compete with $v_t^* = \arg \max_{v} v \cdot \Pr[v \le y_t]$.
- LP models our strategy; LV models the nature.



LP versus LV: Regret

LP compete with the best fixed linear policy:

$$Regret_{LP} \coloneqq \max_{\beta} \sum_{t=1}^{T} x_t^{\mathsf{T}} \beta \cdot \mathbb{E}[x_t^{\mathsf{T}} \beta \leq y_t] - x_t^{\mathsf{T}} \beta_t \cdot \mathbb{E}[x_t^{\mathsf{T}} \beta_t \leq y_t]$$

Max expected reward of a fixed linear policy

Expected reward of our (linear) prices

LV compete with the best price at each time

$$Regret_{LV} \coloneqq \sum_{t=1}^{T} \max_{v} v \cdot \Pr[v \le x_{t}^{\mathsf{T}} \theta^{*} + N_{t} | \theta^{*}, \mathbb{D}] - v_{t} \cdot \Pr[v_{t} \le x_{t}^{\mathsf{T}} \theta^{*} + N_{t} | \theta^{*}, \mathbb{D}]$$

Max expected reward at time *t*

Expected reward of our prices

Existing Results

Problem	Linear Valuation				Linear Policy
Noise Assumption	Noise-free	Known, Log-concave	Parametric	Agnostic, Bounded	
Upper Regret Bound	$O(d \log \log T)$ [PLS18]	$O(d \log T)$ [XW21]	$ ilde{O}ig(d\sqrt{T}ig)$ [WTL21]	$ ilde{O}(T^{rac{3}{4}}+d^{rac{1}{2}}T^{rac{5}{8}})$ [This Work]	$ ilde{O}(d^{rac{1}{3}}T^{rac{2}{3}})$ [This Work]
Lower Regret Bound	$\Omega(d \log \log T)$ [KL03]	$\Omega(d\log T)$ [JN19]	$\Omega(d\sqrt{T})$ [BK21]	$ ilde{\Omega}(T^{rac{2}{3}})$ [KL03, This Work]	$ ilde{\Omega}(d^{rac{1}{3}}T^{rac{2}{3}})$ [This Work]

EXP-4 [ACBFS02]: a Contextual Bandit Algorithm

for t = 1 to T do

Set probability $p_j(t)$ for each action j according to weights of all policies;

Get a_t by Thompson sampling the action set A according to current probability $\{p_j(t)\}$;

Receive a reward r_t ;

Construct an Inverse Propensity Scoring (IPS) estimator $\hat{r}_i(t)$ for the reward of each action i. Update weights w_i 's according to $\hat{r}_i(t)$.

end for

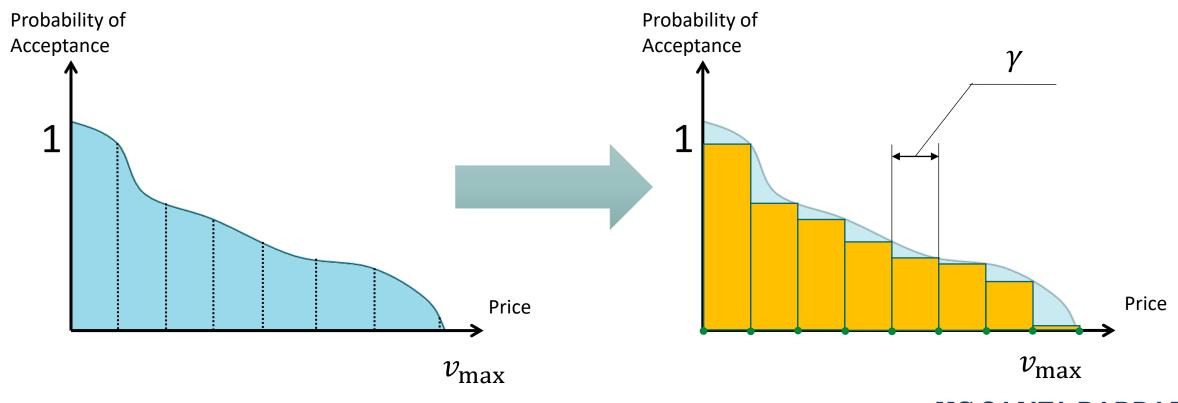
• Input: Time horizon T, action set \mathcal{K} , policy set Π ; features x_t at each time

- Output: action a_t at each time
 - approaching optimal policy π^*
 - with $O\left(\sqrt{T|\mathcal{K}|\log|\Pi|}\right)$ regret

- Only works for finite action/policy sets.
 - Discretize the price/hypothesis space.

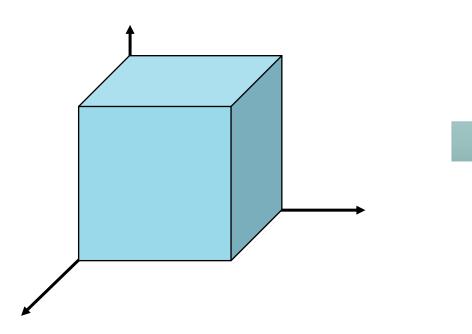
Discretization: Action Space

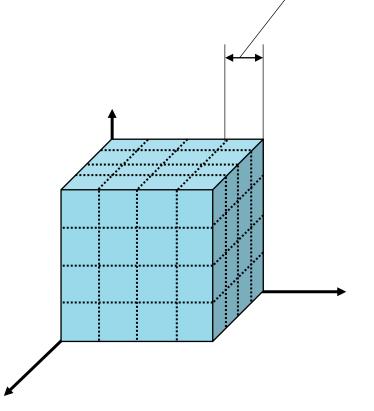
- Split the price range into size- γ segments.
- Action set consists of all end points



Discretization: Policy Space (1) -- Vector

- Discretize the policy vector space into grids:
 - Cut into size- Δ^d grids, where $\Delta = \frac{\gamma}{\sqrt{d}}$.
 - Total number of β 's: $\left(\frac{1}{\Delta}\right)^d = \left(\frac{\sqrt{d}}{\gamma}\right)^d$





Linear-EXP4: Algorithm for LP

- Action $\mathcal{K} = \{k \cdot \gamma, k = 0, 1, \dots, \lfloor 1 \rfloor_{\gamma}\}$
- Policy $\Pi = \{\pi_{\beta} : \pi_{\beta}(x) = [x^{\mathsf{T}}\beta]_{\gamma}\}$, with $\beta \in \text{size-}\Delta^d$ grids.
 - " γ -flooring": $[a]_{\gamma} = \left[\frac{a}{\gamma}\right] \cdot \gamma$.
- Let $\gamma = d^{\frac{1}{3}}T^{-\frac{1}{3}}$, and the regret = $\tilde{O}(d^{\frac{1}{3}}T^{\frac{2}{3}})$.
 - Notice that $|\mathcal{K}| = O\left(\frac{1}{\gamma}\right)$, $|\Pi| = \left(\frac{\sqrt{d}}{\gamma}\right)^{\alpha}$,
 - matching the discretization error $O(T\gamma)$.

Discretization: Policy Space (2) -- Distribution

- In LV, recall: $y_t = x_t^T \theta^* + N_t$
 - with $\theta^* \in \mathbb{R}^d$ fixed and $N_t \sim \mathbb{D}$.

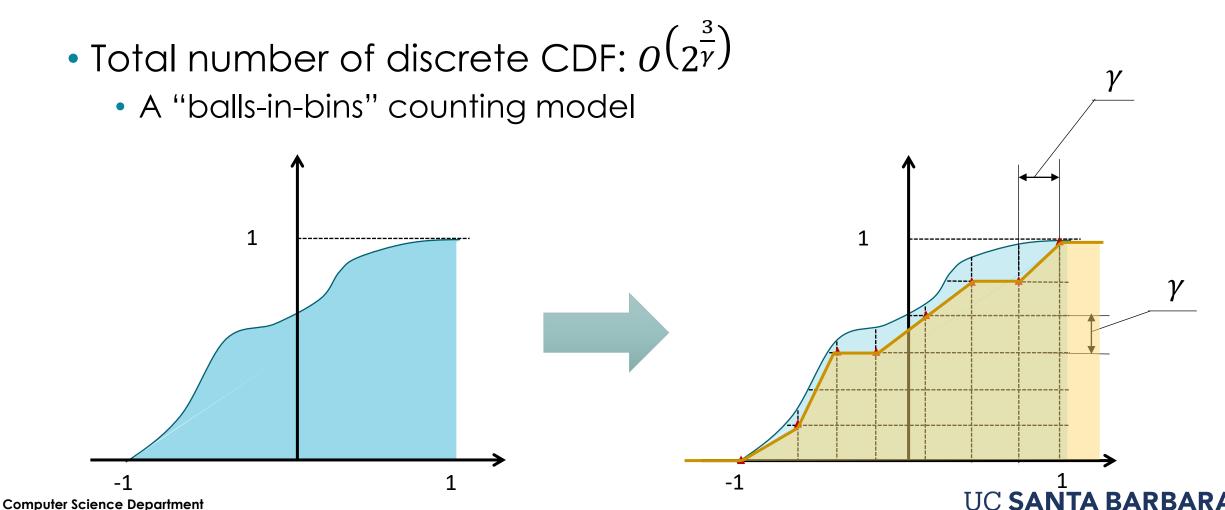
• If we know θ^* and \mathbb{D} , then ...

$$\pi^*(x) = \arg\max_{v} v \cdot \Pr[v \le y_t] = \arg\max_{v} v \cdot \left(1 - F_{\mathbb{D}}(v - x_t^{\mathsf{T}}\theta^*)\right)$$

- $F_{\mathbb{D}}$ is the CDF of \mathbb{D} .
- Idea: policy built on both $\hat{ heta}$ and $\hat{F}_{\mathbb{D}}$.

Discretization: Policy Space (2) -- Distribution

• 3 steps to discretize $F_{\mathbb{D}}$: Griding, Flooring, Connecting



D2-EXP4: Algorithm for LV

- Still, we play the EXP-4:
 - Action $\mathcal{K} = \{k \cdot \gamma, k = 0, 1, \dots, \lfloor 1 \rfloor_{\gamma}\}$
 - Policy $\Pi = \{\pi(x; \hat{\theta}, \hat{F}) \coloneqq \arg\max_{v} v \cdot \left(1 \hat{F}(v x^{\mathsf{T}}\hat{\theta})\right) (B+1)\gamma\}$
 - $\hat{\theta} \in \text{size-}\Delta^d$ grids, $\hat{F} \in \text{discrete CDF family}$.
 - Subtracting $(B+1)\gamma$ for more chance to succeed.
- Choose $\gamma = T^{-\frac{1}{4}}$, and $Regret = \tilde{O}(T^{\frac{3}{4}} + d^{\frac{1}{2}}T^{\frac{5}{8}})$.
 - Matching the discretization error $O(T\gamma)$.
- Prove a $\widetilde{\Omega}(T^{\frac{2}{3}})$ lower bound.

Property: Half-Lipschitzness

- Noise distribution is not necessarily Lipschitz.
- Probability of acceptance never increases

$$R(v) = v \cdot \Pr[v \le y_t]$$

$$\ge v \cdot \Pr[(v + \delta) \le y_t]$$

$$\ge (v + \delta) \cdot \Pr[(v + \delta) \le y_t] - \delta$$

$$= R(v + \delta) - \delta$$

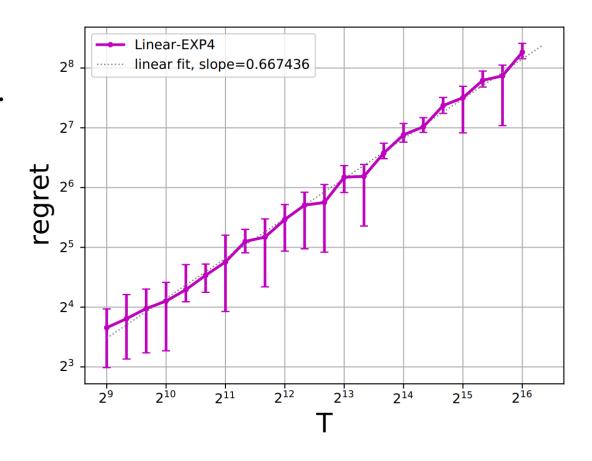
- Expected reward R(v) increament \leq Price v increament
 - We call this property a "half-Lipschitz".

- Therefore, we only suffer δ -more regret (discretization error) by choosing a δ -conservative price, i.e. choosing ($\hat{v} \delta$).
 - This enables us to discretizing the action/policy spaces

Numerical Experiments on Linear-EXP4

- A log-log plot of regret
 - r-slope indicates $O(T^r)$ regret.
- 2/3 in theory, 0.67 in practice

- D2-EXP4 consumes EXP-time!
 - Code released



Open Problem: Regret Gap of LV

• Our $\tilde{O}(T^{\frac{3}{4}})$ result holds for **any** noise CDF, w/ or w/o continuity.

- For m^{th} -order smooth CDF, [FGY21] shows a $\tilde{O}(T^{\frac{2m+1}{4m-1}})$ regret.
 - Non-trivial for $m \geq 2$.
 - Still unmatched with the $\widetilde{O}(T^{\frac{m+1}{2m+1}})$ lower bound presented in [WCSL21]
- [LS21] achieves a $\tilde{O}(T^{\frac{2}{3}V(1-\alpha)})$ regret by assuming a good estimator $\hat{\theta}_t$: $||\hat{\theta}_t \theta^*||_2 = O(t^{-\alpha})$ with logged data.
 - The existence is unknown and is highly non-trivial.

References

- [ACBFS02] Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The nonstochastic multiarmed bandit problem. SIAM journal on computing, 32(1), 48-77.
- [KL03] Kleinberg, R. and Leighton, T. (2003). The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In FOCS-03, pages 594-605. IEEE.
- [CLPL16] Cohen, M. C., Lobel, I., and Paes Leme, R. (2016). Feature-based dynamic pricing. In EC-16, pages 817-817.
- [PLS18] Leme, R. P. and Schneider, J. (2018). Contextual search via intrinsic volumes. In FOCS-18, pages 268-282. IEEE.
- [JN19] Javanmard, A. and Nazerzadeh, H. (2019). Dynamic pricing in high-dimensions. The Journal of Machine Learning Research, 20(1):315-363.
- [XW21] Xu, J., & Wang, Y. X. (2021). Logarithmic regret in feature-based dynamic pricing. In NeurlPS-21, 34.
- [WCSL21] Wang, Y., Chen, B., & Simchi-Levi, D. (2021). Multimodal dynamic pricing. Management Science, 67(10), 6136-6152.
- [LS21] Luo, Y., Sun, W. W., et al. (2021). Distribution-free contextual dynamic pricing. arXiv preprint arXiv:2109.07340.
- [FGY21] Fan, J., Guo, Y., & Yu, M. (2021). Policy Optimization Using Semiparametric Models for Dynamic Pricing. Available at SSRN 3922825.
- [WTL21] Wang, H., Talluri, K., & Li, X. (2021). On Dynamic Pricing with Covariates. arXiv preprint arXiv:2112.13254.
- [BK21] Ban, G. Y., & Keskin, N. B. (2021). Personalized dynamic pricing with machine learning: High-dimensional features and heterogeneous elasticity. Management Science, 67(9), 5549-5568.

UC SANTA BARBARA