Dynamic Pricing in Different Valuation Models

Jianyu Xu

- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Problem Setting

For $t=1,2, \ldots, n$:

- Customers create a valuation $y_{t} \in[\mathbf{0}, \mathbf{1}]$ secretly.
- We propose a price $p_{t} \in[\mathbf{0}, \mathbf{1}]$.
- Customers make a decision $1_{t}=1\left[p_{t} \leq y_{t}\right]$.
- We get a reward $r_{t}\left(p_{t}\right)=p_{t} \cdot 1\left[p_{t} \leq y_{t}\right]$.

How to define a regret?

Problem Setting -- Regret

Regret is defined as the difference between:

1. Max cumulative reward of a fixed price, i.e.

$$
\max _{p} \sum_{t=1}^{n} r_{t}(p)
$$

2. Cumulative reward of our algorithm, i.e.

$$
\sum_{t=1}^{n} r_{t}\left(p_{t}\right)
$$

Problem Setting -- Valuations

The series $\left\{y_{t}\right\}_{t=1}^{n}$ can be drawn from 3 models:

- Identical: $y_{t} \equiv p, t=1,2, \ldots, n$.
- Stochastic: $\left\{y_{t}\right\}_{t=1}^{n}$ are i.i.d. samples from a fixed distribution
- Adversarial (worst-case).

Problem Setting -- Recap

For $t=1,2, \ldots, n$:

- Customers create a valuation $y_{t} \in[0,1]$ secretly.
- We propose a price p_{t}.
- Customers make a decision $1_{t}=1\left[p_{t} \leq y_{t}\right]$.
- We get a reward $r_{t}\left(p_{t}\right)=p_{t}$. $1\left[p_{t} \leq y_{t}\right]$.

Regret:

$$
\max _{p} \sum_{t=1}^{n} r_{t}(p)-\sum_{t=1}^{n} r_{t}\left(p_{t}\right)
$$

Valuation models:

- Identical (fixed)
- Stochastic (i.i.d.)
- Adversarial (worst-case)

Different from bandits

- The feedback is more informative: prices are sequential.
- If p_{t} is accepted, then $\forall p \leq p_{t}$ should be accepted.
- If p_{t} is rejected, then $\forall p \geq p_{t}$ should be rejected.
- While in MAB, the reward of one arm does not indicate the others.
- The actions can be continuous.
- For MAB, there are only K actions.
- Even though prices are discrete in practice, we usually treat it as continuous in theoretical analysis.

Which is harder?

Pricing v.s. Bandits: which is harder?

I reduced them to each other.

- Theorem 0.1: A dynamic pricing problem with K prices can be reduced to a multi-armed bandit problem with K actions.
- The proof is trivial.
- Theorem 0.2: A multi-armed bandit problem with K actions can be reduced to a dynamic pricing problem with poly (K) prices.

Pricing v.s. Bandits: which is harder?

Theorem 0.2: A multi-armed bandit problem with K actions can be reduced to a dynamic pricing problem with poly (K) actions.

Proof sketch: let $K=2$ as an example:

- In the multi-armed bandit, assume $r_{1}=a, r_{2}=b, 1 / 2<a<b<1$ without losing of generality.
- We reduce it to 2 dynamic pricing problems:

1. Valuation $\operatorname{Pr}[y=2 b]=\operatorname{Pr}[y=0]=1 / 2$, prices $p_{1}=2 a, p_{2}=2 b$;
2. Valuation $\operatorname{Pr}[y=2 b]=\frac{a}{2 b}, \operatorname{Pr}[y=2 a]=\frac{b^{2}-a^{2}}{2 a b}, \operatorname{Pr}[y=0]=\frac{2 a-b}{2 a}$, prices $p_{1}=2 a, p_{2}=2 b$

Pricing v.s. Bandits: which is harder?

- Valuation $\operatorname{Pr}[y=2 b]=\operatorname{Pr}[y=0]=1 / 2$, prices $p_{1}=2 a, p_{2}=2 b$;
- $\mathbb{E}\left[r\left(p_{1}\right)\right]=a, \mathbb{E}\left[r\left(p_{2}\right)\right]=b$.
- Valuation $\operatorname{Pr}[y=2 b]=\frac{a}{2 b}, \operatorname{Pr}[y=2 a]=\frac{b^{2}-a^{2}}{2 a b}, \operatorname{Pr}[y=0]=\frac{2 a-b}{2 a}$, prices

$$
\begin{aligned}
& p_{1}=2 a, p_{2}=2 b . \\
& \text { - } \mathbb{E}\left[r\left(p_{1}\right)\right]=b, \mathbb{E}\left[r\left(p_{2}\right)\right]=a .
\end{aligned}
$$

- Thus, we have got rid of the sequence of prices.
- Therefore, the bandit problem is reduced to a pricing problem with discrete prices.
$\cdot \Rightarrow$ Pricing with continuous prices \geqslant multi-armed bandits

Shall we treat it as bandits?

- Pros: we are familiar with bandits.
- Especially for non-parametric models.
- Cons: we will suffer:
- Interior regret caused by discrete prices: a \sqrt{K} factor
- Exterior regret: intervals between discrete prices.
- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Stochastic Valuation: main idea

- Main idea: discretization + stochastic bandits
- How to discretize prices?
- Uniformly divide into K prices: $\left\{\frac{1}{K}, \frac{2}{K}, \ldots, \frac{i}{K}, \ldots, 1-\frac{1}{K}, 1\right\}$
- Which bandit algorithm to use?
- In this paper, they use UCB-1.
- How to bound the regret?
- Exploit the distance-dependent regret of UCB-1.
- Carefully select K to balance interior and exterior regret.

Demand Curve

- For any price $x \in[0,1]$, define a "demand function"
as:

$$
D(x):=\operatorname{Pr}_{\mathrm{y}}[x \leq y]
$$

- Define an expected revenue $f(x):=x D(x)$.
- Denote $\mu_{i}:=f\left(\frac{i}{K}\right)$, and $\mu^{*}:=\max _{i} \mu_{i}, \Delta_{i}=\mu^{*}-\mu_{i}$.

Assumptions

We make 2 assumptions:

- Assumption 1: the expected revenue $f(x):=x D(x)$ has a unique global maximum at $x^{*} \in(0,1)$.
- Assumption 2: $f^{\prime \prime}\left(x^{*}\right)<0$. (Local concavity)

Stochastic Valuation: theorem

Based on these two assumptions, we have:

Theorem 3.14. Assuming that the function $f(x)=x D(x)$ has a unique global maximum $x^{*} \in(0,1)$, and that $f^{\prime \prime}\left(x^{*}\right)$ is defined and strictly negative, the strategy UCB1 with $K=\left\lceil(n / \log n)^{1 / 4}\right\rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Here n is T in our notations.

- UCB-1:

> Play machine j that maximizes $\bar{x}_{j}+\sqrt{\frac{2 \ln n}{n_{j}}}$, where \bar{x}_{j} is the average reward obtained from machine j, n_{j} is the number of times machine j has been played so far, and n is the overall number of plays done so far.

Stochastic Valuation: proof

Theorem 3.14. Assuming that the function $f(x)=x D(x)$ has a unique global maximum $x^{*} \in(0,1)$, and that $f^{\prime \prime}\left(x^{*}\right)$ is defined and strictly negative, the strategy UCB1 with $K=\left\lceil(n / \log n)^{1 / 4}\right\rceil$ achieves expected regret $O(\sqrt{n \log n})$.

We decompose the reward as 4 stages:

1. Reward of UCB-1;
2. Reward of x^{*}, where $x^{*}=\operatorname{argmax}_{x} f(x)$;
3. Reward of $\frac{j^{*}}{\mathrm{~K}}$, where $j^{*}=\operatorname{argmin}_{\mathrm{j}}\left|\mathrm{x}^{*}-\frac{\mathrm{j}^{*}}{\mathrm{~K}}\right|$;
4. Reward of p^{*}, where $p^{*}=\operatorname{argmax}_{p} \sum_{t} p \cdot 1\left[p \leq y_{t}\right]$.

Note: p^{*} is random.
$\cdot \mathbb{E}[1] \leq \mathbb{E}[3] \leq \mathbb{E}[2] \leq \mathbb{E}[4]$, and 3 regrets in between.

BOAOMIS Regre"

Theorem 3.14. Assuming that the function $f(x)=x D(x)$ has a unique global maximum $x^{*} \in(0,1)$, and that $f^{\prime \prime}\left(x^{*}\right)$ is defined and strictly negative, the strategy UCB1 with $K=\left\lceil(n / \log n)^{1 / 4}\right\rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Regret Part 1: UCB-1 v.s. $\frac{j^{*}}{\mathrm{~K}}$ closest to x^{*}

- \leq Regret of UCB-1

Theorem 1. For all $K>1$, if policy UCB1 is run on K machines having arbitrary reward distributions P_{1}, \ldots, P_{K} with support in $[0,1]$, then its expected regret after any number n of plays is at most

$$
\left[8 \sum_{i: \mu_{i}<\mu^{*}}\left(\frac{\ln n}{\Delta_{i}}\right)\right]+\left(1+\frac{\pi^{2}}{3}\right)\left(\sum_{j=1}^{K} \Delta_{j}\right)
$$

- $\Delta_{i}=\mu^{*}-\mu_{i}$, where $\mu_{i}=f\left(\frac{i}{K}\right), \mu^{*}=\max _{i} \mu_{i}$

Note: we may assume $\mu_{j^{*}}=\mu^{*}$ without losing of generality.

Bandits Regret

$$
\left[8 \sum_{i: \mu_{i}<\mu^{*}}\left(\frac{\ln n}{\Delta_{i}}\right)\right]+\left(1+\frac{\pi^{2}}{3}\right)\left(\sum_{j=1}^{K} \Delta_{j}\right) \quad \rightarrow \quad O(\sqrt{n \log n})
$$

- How to bound Δ_{i} ? ------ 2 assumptions: unique x^{*}, negative $f^{\prime \prime}\left(x^{*}\right)$

Lemma 3.11. There exist constants C_{1}, C_{2} such that $C_{1}\left(x^{*}-x\right)^{2}<f\left(x^{*}\right)-$ $f(x)<C_{2}\left(x^{*}-x\right)^{2}$ for all $x \in[0,1]$.

Corollary 3.12. $\Delta_{i} \geq C_{1}\left(x^{*}-i / K\right)^{2}$ for all i. If $\tilde{\Delta}_{0} \leq \tilde{\Delta}_{1} \leq \ldots \leq \tilde{\Delta}_{K-1}$ are the elements of the set $\left\{\Delta_{1}, \ldots, \Delta_{k}\right\}$ sorted in ascending order, then $\tilde{\Delta}_{j} \geq$ $C_{1}(j / 2 K)^{2}$.

Corollary 3.13. $\mu^{*}>x^{*} D\left(x^{*}\right)-C_{2} / K^{2}$.

See Notes

Discretization Error

Theorem 3.14. Assuming that the function $f(x)=x D(x)$ has a unique global maximum $x^{*} \in(0,1)$, and that $f^{\prime \prime}\left(x^{*}\right)$ is defined and strictly negative, the strategy UCB1 with $K=\left\lceil(n / \log n)^{1 / 4}\right\rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Regret Part 2: $\frac{j^{*}}{\mathrm{~K}}$ closest to x^{*} V.s. x^{*}
Corollary 3.13. $\mu^{*}>x^{*} D\left(x^{*}\right)-C_{2} / K^{2}$.

- Cumulative error $\leq \frac{C_{2}}{K^{2}} \cdot n=O(\sqrt{n \log n})$

Ex ante regret and ex post regret

Regret Part 3: x^{*} V.s. $p^{*}=\operatorname{argmax}_{p} \sum_{t} p \cdot 1\left[p \leq y_{t}\right]$

- i.e., max expected revenue v.s. expected max revenue
- $f\left(x^{*}\right)$ is called ex ante revenue
- which is optimal before knowing y_{t}.
- $\frac{1}{n} \sum_{t} p^{*} \cdot 1\left[p^{*} \leq y_{t}\right]$ is called ex post revenue
- Which is optimal after knowing all y_{t}.
- $\mathbb{E}\left[\max _{p} \frac{1}{n} \sum_{t} p \cdot 1\left[p \leq y_{t}\right]\right] \geq f\left(x^{*}\right)$
- Ex ante regret \rightarrow training; ex post regret \rightarrow testing

Ex ante regret and ex post regret

Theorem 3.14. Assuming that the function $f(x)=x D(x)$ has a unique global maximum $x^{*} \in(0,1)$, and that $f^{\prime \prime}\left(x^{*}\right)$ is defined and strictly negative, the strategy UCB1 with $K=\left\lceil(n / \log n)^{1 / 4}\right\rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Regret Part 3: x^{*} V.s. $p^{*}=\operatorname{argmax}_{p} \sum_{t} p \cdot 1\left[p \leq y_{t}\right]$

- Define: $\rho(x)=\sum_{t=1}^{n} x \cdot 1\left[x \leq y_{t}\right]$
- $\mathbb{E}\left[\rho\left(x^{*}\right)\right]=f\left(x^{*}\right)$
- $\Rightarrow \rho(x) \geq \rho\left(p^{*}\right)-n\left(p^{*}-x\right), \forall x<p^{*}$.
- $\Rightarrow \int_{0}^{1} \operatorname{Pr}\left[\rho(x)-\rho\left(x^{*}\right)>\lambda\right] d x \geq \frac{\lambda}{n} \operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>2 \lambda\right]$
- Chernoff Bound: $\operatorname{Pr}\left[\rho(x)-\rho\left(x^{*}\right)>\lambda\right]<\exp \left\{-\lambda^{2} / 2 n\right\}$
- for martingale
$\cdot \Rightarrow \operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>2 \lambda\right]<\min \left\{1, \frac{n}{\lambda} \exp \left\{-\lambda^{2} / 2 n\right\}\right\}$

Ex ante regret and ex post regret

Theorem 3.14. Assuming that the function $f(x)=x D(x)$ has a unique global maximum $x^{*} \in(0,1)$, and that $f^{\prime \prime}\left(x^{*}\right)$ is defined and strictly negative, the strategy UCB1 with $K=\left\lceil(n / \log n)^{1 / 4}\right\rceil$ achieves expected regret $O(\sqrt{n \log n})$.

$$
\begin{aligned}
& \operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>2 \lambda\right]<\min \left\{1, \frac{n}{\lambda} \exp \left\{-\lambda^{2} / 2 n\right\}\right\} \\
& \Rightarrow \mathbb{E}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)\right] \leq \int_{0}^{+\infty} \operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>y\right] d y \\
&<\int_{0}^{+\infty} \min \left\{1, \frac{2 n}{y} \exp \left\{-\frac{y^{2}}{2 n}\right\}\right\} d y \\
&<\int_{0}^{\sqrt{4 n \log n}} d y+\int_{\sqrt{4 n \log n}}^{+\infty} \frac{2 n}{\sqrt{4 n \log n}} \exp \left\{-\frac{y^{2}}{2 n}\right\} d y \\
&=O(\sqrt{n \log n})
\end{aligned}
$$

Recap: stochastic valuations

- 2 Methods:
- Discretization: K uniformly
- Bandit algorithm: UCB-1
- 3 steps of regret bounds:
- Regret of UCB-1
- Error of discretization
- Ex post revenue - ex ante revenue
- Skills of proving:
- Smoothness \& Strong concavity \rightarrow quadratic bounds
- Distance-dependent regret of UCB-1
- $2^{\text {nd }}$ definition of expectation
- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Adversarial Valuation: main idea

- Main idea: discretization + adversarial bandits
- How to discretize prices?
- Uniformly divide into K prices: $\left\{\frac{1}{K}, \frac{2}{K}, \ldots, \frac{i}{K}, \ldots, 1-\frac{1}{K}, 1\right\}$
- Which bandit algorithm to use?
- In this paper, they use EXP-3.
- How to bound the regret?
- Carefully select K to balance interior and exterior regret.

Adversarial Bandits

- The reward $r_{i}(t)$ of choosing action i at time t is arbitrarily determined in advance, but in secret.
- Regret: compare with the optimal fixed action.
- Here ex ante regret = ex post regret.
- Therefore: requires active explorations.
- Randomness of algorithm.
- In comparison, UCB-1 has passive explorations.

Algorithm Exp3

Parameters: Real $\gamma \in(0,1]$.
Initialization: $w_{i}(1)=1$ for $i=1, \ldots, K$.
For each $t=1,2, \ldots$

1. Set

$$
p_{i}(t)=(1-\gamma) \frac{w_{i}(t)}{\sum_{j=1}^{K} w_{j}(t)}+\frac{\gamma}{K} \quad i=1, \ldots, K .
$$

2. Draw i_{t} randomly accordingly to the probabilities $p_{1}(t), \ldots, p_{K}(t)$.
3. Receive reward $x_{i_{t}}(t) \in[0,1]$.
4. For $j=1, \ldots, K$ set

$$
\begin{aligned}
\hat{x}_{j}(t) & =\left\{\begin{array}{cl}
x_{j}(t) / p_{j}(t) & \text { if } j=i_{t}, \\
0 & \text { otherwise, }, \\
w_{j}(t+1) & =w_{j}(t) \exp \left(\gamma \hat{x}_{j}(t) / K\right) .
\end{array}\right.
\end{aligned}
$$

- First efficient algorithm for adversarial bandits.

Regret Bound

Theorem 3.1. For any $K>0$ and for any $\gamma \in(0,1]$,

$$
G_{\max }-\mathbf{E}\left[G_{\operatorname{Exp} 3}\right] \leq(e-1) \gamma G_{\max }+\frac{K \ln K}{\gamma}
$$

- Let $\gamma=\min \left\{1, \sqrt{\frac{K \ln K}{(e-1) n}}\right\}$, and RHS $\leq 2 \sqrt{e-1} \sqrt{n K \ln K}$

Also, the discretization error $\leq n \cdot \frac{1}{K}=\frac{n}{K}$.

- To balance $\sqrt{n K \ln K}$ and $\frac{n}{K^{\prime}}$ let $K=\left[\frac{n}{\ln n}\right]^{1 / 3}$, then the regret bound is $O\left(n^{2 / 3}(\ln n)^{1 / 3}\right)$.
- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Fixed Valuation

- Method: search a feasible interval $[a, b]$ with ϵ-length steps: $a, a+\epsilon, a+2 \epsilon, \ldots, b-\epsilon, b$.
- Initialization: $a=0, b=1, \epsilon=1 / 2$,
- If $a+k \epsilon$ is accepted, but $a+(k+1) \epsilon$ is not, then:
- $a \leftarrow a+k \epsilon$
- $b \leftarrow a+(k+1) \epsilon$
$\cdot \epsilon \leftarrow \epsilon^{2}$
- Terminal: when $b-a<1 / n$, always choose a afterwards.
- First explore then exploit.

Squaring search

Fixed Valuation: regret bound

Theory: this algorithm achieves regret $O(\log \log n)$.

- Proof sketch: we call each update of $[a, b]$ a phase.

1. As \in from $\frac{1}{2}$ to $\frac{1}{n}$, there are $O(\log \log n)$ phases.
2. Only one rejection in each phase.
-- regret of rejection $=O(\log \log n)$.
3. Within each phase, $b-a=\sqrt{\epsilon}$, at most $\frac{\sqrt{\epsilon}}{\epsilon}=\frac{1}{\sqrt{\epsilon}}$ buys.
4. Within each phase, regret is at most $\sqrt{\epsilon} \times \frac{1}{\sqrt{\epsilon}}=1$.
-- regret of acceptance $=O(\log \log n)$

Why not binary search?

- Binary search is most informative.
- But what is "informative"?
- Do we need "informative"?

Claim: a binary search will suffer from $\Theta(\log n)$ regret.

- For $O(\log n)$, the claim is trivial.
- For $\Omega(\log n)$, consider the case where valuation $=\frac{1}{2}$.
- Round $1: x=1 / 2 \rightarrow$ accepted.
- Afterwards: always rejected until stopping explorations.
- Times of explorations: $1 / 2 \rightarrow 1 / \mathrm{n}, O(\log n)$
- Regret of each explorations: $1 / 2$.

Take-home ideas

- Different settings of dynamic pricing problems.
- Fixed/stochastic/adversarial valuations.
- Regret: $O(\log \log n), \tilde{O}(\sqrt{n \log n}), \tilde{O}\left(n^{2 / 3}\right)$.
- Approach: discretization + multi-armed bandits.
- Stochastic bandits: UCB-1, with distance-dependent regret.
- Adversarial bandits: EXP-3.

UC SANTA BARBARA

