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Problem Setting

Fort =1,2,...,n:

« Customers create a valuation y; € [0, 1] secretly.

* We propose a price p; € [0,1].

« Customers make a decision 1; = 1[p; < y¢].

- We get areward ry(ps) = pe - 1[pe < yel.

How to define aregret?
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Problem Setting -- Regret

Regret is defined as the difference between:

1. Max cumulative reward of a fixed price, i.e.
n

Y

t=1

2. Cumulative reward of our algorithm, i.e.
n

z r: (D)

t=1
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Problem Setting -- Valuations

The series {y;}{-; can be drawn from 3 models:
* Identical: y, =p, t =1,2,...,n.
- Stochastic: {y,}7-; are i.i.d. samples from a fixed distribution

- Adversarial (worst-case).
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Problem Setting -- Recap

Fort=1,2,...,n: Regret:

n n
« Customers create a valuation maxz re(p) — z e (p)
p
t=1 t=1

y: € [0,1] secretly.

- We propose a price p;.

o Valuation models:
« Customers make a decision

1 = 1p: < yel.

* |[dentical (fixed)

- We get areward r,(p,) = p; - - Stochastic (i.i.d.)

1[pe < y¢l. « Adversarial (worst-case)
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Different from bandits

* The feedback is more informative: prices are sequential.
* If p; is accepted, then Vp < p; should be accepted.
* If p; iIs rejected, then vp = p; should be rejected.

* While in MAB, the reward of one arm does not indicate the others.

» The actions can be confinuous.
« For MAB, there are only K actions.

* Even though prices are discrete in practice, we usually treat it as

continuous in theoretical analysis.

Which is harder?
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Pricing v.s. Bandits: which is harder?

| reduced them to each other.

* Theorem 0.1: A dynamic pricing problem with K prices can be
reduced to a multi-armed bandit problem with K actions.
* The proof is trivial.

- Theorem 0.2: A multi-armed bandit problem with K actions can
be reduced to a dynamic pricing problem with poly(K) prices.
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Pricing v.s. Bandits: which is harder?

Theorem 0.2: A multi-armed bandit problem with K actions can be
reduced to a dynamic pricing problem with poly(K) actions.

Proof sketch: let K = 2 as an example:

* In the multi-armed bandit, assumer, = a,, =b,1/2<a<b< 1

without losing of generality.
* We reduce it fo 2 dynamic pricing problemes:

1. Valuation Pr[y = 2b] = Pr[y = 0] = 1/2, prices p; = 2a,p, = 2b;

2_ 2 —
2. Valuation Pr[y = 2b] = —,Pr|y = 2a] = bZaZ ,Prly = 0] = Zzab,

prices p; = 2a,p, = 2b
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Pricing v.s. Bandits: which is harder? "

* Valuation Pr|y = 2b] = Pr[y = 0] = 1/2, prices p; = 2a,p, = 2b;

* E[r(p)] = a,E[r(p)] = b.

* Valuation Prly = 2b] = —,Prly = 2a] =

4
2b
p1 = 2a,p, = 2b.
* E[r(p1)] = b, E[r(p2)] = a.
* Thus, we have got rid of the sequence of prices.
* Therefore, the bandit problem is reduced to a pricing problem
with discrete prices.

» = Pricing with continuous prices = multi-armed bandits
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Shall we treat it as bandits?

* Pros: we are familiar with bandits.

 Especially for non-parametric models.

« Cons: we will suffer:

- Interior regret caused by discrete prices: a VK factor

- Exterior regret: intervals between discrete prices.
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Stochastic Valuation: main idea ;

 Main idea: discretization + stochastic bandits

* How to discretize pricese |
- Uniformly divide into K prices: {%% é 1= % 1)

* Which bandit algorithm 1o use?
* In this paper, they use UCB-1.

* How to bound the regrete
* Exploit the distance-dependent regret of UCB-1.
» Carefully select K to balance interior and exterior regret.
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Demand Curve

* For any price x € [0,1], define a “demand function”

as.

D(x) = l;r[x < y]

» Define an expected revenue f(x) = xD(x).

Denote u; == f (é) and u* = max ;. Ay =u* — ;.
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Assumptions

We make 2 assumptions:

« Assumption 1: the expected revenue f(x) = xD(x) has @

unigue global maximum at x* € (0,1).

« Assumption 2: f"(x*) < 0. (Local concavity)
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Stochastic Valuation: theorem ¢

Based on these two assumptions, we have:

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
maximum x* € (0,1), and that f"(x*) is defined and strictly negative, the strat-
eqy UCB1 with K = [(n/logn)*] achieves expected regret O(y/nlogn).

Here nis T in our notations.

 UCB-1:

) oo _ 21n .
Play machine j that maximizes z; + —n, where z; 1s the
4

average reward obtained from machine j, n; i1s the number of
times machine ;7 has been played so far, and n is the overall
number of plays done so far.
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Stochastic Valuation: proof !

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
maximum x* € (0,1), and that f"(z*) is defined and strictly negative, the strat-
eqy UCBL with K = [(n/logn)'/*] achieves expected regret O(y/nlogn).

We decompose the reward as 4 stages:
|. Reward of UCB-1;
2. Reward of x*, where x* = argmax, f(x);

3. Reward of L, where j* = argmin;|x* — L |;

4. Reward of p*, where p* = argmax, Y. p - 1[p < y:].

Note: p* is random.
« E[1] < E[3] < E[2] < E[4], and 3 regrets in between.
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Bandits Regret

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
maximum x* € (0,1), and that f"(z*) is defined and strictly negative, the strat-
eqy UCB1 with K = [(n/logn)'/*] achieves expected regret O(y/nlogn).

Regret Part 1: UCB-1 v.s. %closes’r to x*
« < Regret of UCB-1

Theorem 1. Forall K > 1, if policy UCBI is run on K machines having arbitrary reward
distributions Py, ..., Pg with support in [0, 1], then its expected regret after any number
n of plays is at most

b2 )] 05)(E

*Ap=pt -, where p; = f (i)u = max y;
Note: we may assume u;« = u* without losing of generality.
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Bandits Regret

Inn 2 X
[8 P (T)] (14 ?)(ZAJ') —  0(y/nlogn)
it <p j=1
* How to bound A; ¢ -——--- 2 assumptions: unique x*, negative f'"(x*)

Lemma 3.11. There exist constants Cy,Co such that Ci(z* — x)? < f(z*) —
f(z) < Cy(z* — x)? for all x € [0, 1].

Corollary 3.12. A; > Cy(z* —i/K)? for all i. If Ag < Ay < ... < Ak,
are the elements of the set {Ay,..., Ay} sorted in ascending order, then A; >

C1(5/2K)?.

Corollary 3.13. p* > 2*D(z*) — Cy /K2,
See Notes
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Discretization Error

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
maximum x* € (0,1), and that f"(z*) is defined and strictly negative, the strat-
eqy UCB1 with K = [(n/logn)'/*] achieves expected regret O(y/nlogn).

Regret Part 2: ]E closest fo x* v.s. x*

Corollary 3.13. p* > z*D(z*) — Cy/K?.

« Cumulative error < —22- = 0(y/nlogn)
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Ex ante regret and ex post regret :

Regret Part 3: x* v.s. p* = argmax, Y, p - 1[p < y¢]

* l.e., max expected revenue v.s. expected max revenue

* f(x*) is called ex ante revenue
* which is optimal before knowing y;.

. %th* - 1|p* < y¢] Is called ex post revenue
* Which is optimal after knowing all y;.

*E|max2Zep - 10p < yel| = 1)

* Ex ante regret - training; ex post regret - testing
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Ex ante regret and ex post regret “

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
mazximum x* € (0,1), and that f"(z*) is defined and strictly negative, the strat-
eqy UCB1 with K = [(n/logn)'/*] achieves expected regret O(y/nlogn).

Regret Part 3: x* v.s. p* = argmax, X, p - 1[p < y¢]

* Define: p(x) = Y1 x - 1[x < y,]

*>px) = p(p) —nlp*—x),Vx <p~.

+ = [y PripCo) = p(x*) > Adx = ZPrip(p”) — p(x") > 24]

- Chernoff Bound: Pr[p(x) — p(x*) > 1] < exp{—A?/2n}

- for martingale

* = Prlp(p*) — p(x*) > 21] < min{l,%exp{—/lz/Zn}}
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Ex ante regret and ex post regret N

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
mazximum x* € (0,1), and that f"(z*) is defined and strictly negative, the strat-
eqy UCB1 with K = [(n/logn)'/*] achieves expected regret O(y/nlogn).

Prip(p*) — p(x*) > 2] < min{l,%exp{—AZ/Zn}}

+ 00

= E[p(@*) —p(x")] < j Prlp(p*) — p(x™) > yldy
0

3 J+OO . ) N yZ d
; min ), y exp o y

Janlogn + 00 M yz
<f dy+j exp{——}dy
0 V4an logn\/47’l logn 2n

= 0(y/nlogn)
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Recap: stochastic valuations

* 2 Methods:

* Discretization: K uniformly
» Bandit algorithm: UCB-1

* 3 steps of regret bounds:
» Regret of UCB-1
* Error of discretization
* Ex post revenue — ex ante revenue

» Skills of proving:
« Smoothness & Strong concavity - quadratic bounds
* Distance-dependent regret of UCB-1
- 2nd definition of expectation
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Ouvutline

* Problem setup
» Pricing with stochastic valuations
* Pricing with adversarial valuations

* Pricing with a fixed valuation
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Adversarial Valuation: main idea

* Main idea: discretization + adversarial bandits

* How to discretize pricese
[ 1

* Uniformly divide intfo K prices: {%% T e 1— = 1}

* Which bandit algorithm to use@¢
* In this paper, they use EXP-3.

- How to bound the regrete
» Carefully select K to balance interior and exterior regret.
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Adversarial Bandits

* The reward r;(t) of choosing actioni at time tis
arbitrarily determined in advance, but in secret.

* Regret: compare with the optimal fixed action.
* Here ex ante regret = ex posf regret.

* Therefore: requires active explorations.
« Randomness of algorithm.
* In comparison, UCB-1 has passive explorations.
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EXP-3

Algorithm Exp3
Parameters: Real v € (0, 1].
Initialization: w;(1) =1fori=1,..., K.

For each t =1.2,...

3. Receive reward z;, (t) € [0, 1].
4. For j=1,..., K set

i5(t) = { z;(t)/py(t) i j =iy,

0 otherwise,
wj(t + 1) = w;(t) exp (vz;(t)/K) .

1. Set
w;(t vy _
pi(t) =(1—7) =% i(t) toe  i=L K
Zj:l w;(t)
2. Draw i; randomly accordingly to the probabilities p;(t),...,pk(t).

* First efficient algorithm for adversarial bandits.

28
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Regret Bound

THEOREM 3.1. For any K > 0 and for any ~ € (0, 1],

Kin K
7

Gmax — E[GExp:}] < ('(L-3 - 1)’}’@1113.}: +

KInK
(e—1)n

*Let y = min {1, } and RHS < 2ve — 1vnK InK

1

Also, the discretization error < n - — =

=:.|=

- To balance vnK InK Clﬂd et K = , then the

regret bound is 0(n?/3(In n)1/3).

_I

In n}
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* Problem setup
* Pricing with stochastic valuations
* Pricing with adversarial valuations

* Pricing with a fixed valuation
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Fixed Valuation !

* Method: search a feasible interval [a, b] with e-length
steps: a,a+€,a+ 2¢,...,b —€,b.
* Initialization: a=0, b=1, e=1/2,

*If a + ke is accepted, but a + (k + 1)e is not, then:

ca< a+ ke
*be—a+(k+1e
© €« €°

* Terminal: when b—a<l1/n, always choose a afterwards.
* First explore then exploit.
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Squaring search B

a [ele = HEEEE °
a+ ke Illllllllllllllllll(l
a+ (k+1)e
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Fixed Valuation: regret bound :

Theory: this algorithm achieves regret O (loglogn).
» Proof sketch: we call each update of [a, b] a phase.

1. As e from % to % there are O(loglogn) phases.

2. Only one rejection in each phase.
-- regret of rejection = 0(loglogn).

3. Within each phase, b — a = /e, at most ‘/f = \/1? buys.

4. Within each phase, regret is at most /e x le = 1.

-- regret of acceptance = 0(loglogn)
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Why not binary search? i

* Binary search is most informative.
* But whatis “informative’?
« Do we need “informative”?¢

Claim: a binary search will suffer from @(logn) regret.
* For O(logn), the claim is trivial.

* For Q(logn), consider the case where valuation = %

* Round 1:x=1/2 - accepted.

« Afterwards: always rejected until stopping explorations.
* Times of explorations: 1/2 2> 1/n, 0(logn)

« Regret of each explorations: 1/2.
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Take-home ideas N

* Different settings of dynamic pricing problems.

» Fixed/stochastic/adversarial valuations.
- Regret: 0(loglogn), 0(y/nlogn), 0(n?/3).

* Approach: discretization + multi-armed bandits.

- Stochastic bandits: UCB-1, with distance-dependent regret.
- Adversarial bandits: EXP-3.
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