Dynamic Pricing in Different Valuation Models

Jianyu Xu

UC SANTA BARBARA

Computer Science Department

Outline

- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Problem Setting

For t = 1, 2, ..., n:

- <u>Customers</u> create a valuation $y_t \in [0, 1]$ secretly.
- <u>We</u> propose a price $p_t \in [0, 1]$.
- <u>Customers</u> make a decision $1_t = 1[p_t \le y_t]$.
- <u>We</u> get a reward $r_t(p_t) = p_t \cdot 1[p_t \le y_t]$.

How to define a regret?

Problem Setting -- Regret

Regret is defined as the difference between:

1. Max cumulative reward of a **fixed** price, i.e.

2. Cumulative reward of our algorithm, i.e.

$$\sum_{t=1}^n r_t(p_t)$$

Problem Setting -- Valuations

The series $\{y_t\}_{t=1}^n$ can be drawn from 3 models:

- Identical: $y_t \equiv p, t = 1, 2, ..., n$.
- **Stochastic**: $\{y_t\}_{t=1}^n$ are i.i.d. samples from a fixed distribution
- Adversarial (worst-case).

Problem Setting -- Recap

For t = 1, 2, ..., n:

- <u>Customers</u> create a valuation $y_t \in [0,1]$ secretly.
- <u>We</u> propose a price p_t .
- <u>Customers</u> make a decision $1_t = 1[p_t \le y_t].$
- <u>We</u> get a reward $r_t(p_t) = p_t \cdot 1[p_t \le y_t].$

Regret:

$$\max_{p} \sum_{t=1}^{n} r_t(p) - \sum_{t=1}^{n} r_t(p_t)$$

Valuation models:

- Identical (fixed)
- Stochastic (i.i.d.)
- Adversarial (worst-case)

UC SANTA BARBARA

Different from bandits

• The feedback is more informative: prices are sequential.

- If p_t is accepted, then $\forall p \leq p_t$ should be accepted.
- If p_t is rejected, then $\forall p \ge p_t$ should be rejected.
- While in MAB, the reward of one arm does not indicate the others.
- The actions can be continuous.
 - For MAB, there are only K actions.
 - Even though prices are discrete in practice, we usually treat it as continuous in theoretical analysis.

Which is harder?

Pricing v.s. Bandits: which is harder?

I reduced them to each other.

- **Theorem 0.1**: A dynamic pricing problem with *K* prices can be reduced to a multi-armed bandit problem with *K* actions.
 - The proof is trivial.
- **Theorem 0.2**: A multi-armed bandit problem with K actions can be reduced to a dynamic pricing problem with poly(K) prices.

Pricing v.s. Bandits: which is harder?

Theorem 0.2: A multi-armed bandit problem with K actions can be reduced to a dynamic pricing problem with poly(K) actions.

Proof sketch: let K = 2 as an example:

- In the multi-armed bandit, assume $r_1 = a, r_2 = b, 1/2 < a < b < 1$ without losing of generality.
- We reduce it to 2 dynamic pricing problems:
- 1. Valuation Pr[y = 2b] = Pr[y = 0] = 1/2, prices $p_1 = 2a$, $p_2 = 2b$;

2. Valuation
$$\Pr[y = 2b] = \frac{a}{2b}$$
, $\Pr[y = 2a] = \frac{b^2 - a^2}{2ab}$, $\Pr[y = 0] = \frac{2a - b}{2a}$,
prices $p_1 = 2a$, $p_2 = 2b$

Pricing v.s. Bandits: which is harder?

- Valuation $\Pr[y = 2b] = \Pr[y = 0] = 1/2$, prices $p_1 = 2a$, $p_2 = 2b$;
 - $\mathbb{E}[r(p_1)] = a, \mathbb{E}[r(p_2)] = b.$
- Valuation $\Pr[y = 2b] = \frac{a}{2b}$, $\Pr[y = 2a] = \frac{b^2 a^2}{2ab}$, $\Pr[y = 0] = \frac{2a b}{2a}$, prices $p_1 = 2a, p_2 = 2b$.
 - $\mathbb{E}[r(p_1)] = b, \mathbb{E}[r(p_2)] = a.$
- Thus, we have got rid of the sequence of prices.
- Therefore, the bandit problem is reduced to a pricing problem with discrete prices.
- \Rightarrow Pricing with continuous prices \ge multi-armed bandits

UC SANTA BARBARA

Shall we treat it as bandits?

- Pros: we are familiar with bandits.
 - Especially for non-parametric models.
- Cons: we will suffer:
 - Interior regret caused by discrete prices: a \sqrt{K} factor
 - Exterior regret: intervals between discrete prices.

Outline

- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Stochastic Valuation: main idea

- Main idea: discretization + stochastic bandits
- How to discretize prices?
 - Uniformly divide into K prices: $\{\frac{1}{K}, \frac{2}{K}, \dots, \frac{i}{K}, \dots, 1 \frac{1}{K}, 1\}$
- Which bandit algorithm to use?
 - In this paper, they use UCB-1.
- How to bound the regret?
 - Exploit the distance-dependent regret of UCB-1.
 - Carefully select K to balance interior and exterior regret.

UC SANTA BARBARA

Demand Curve

• For any price $x \in [0,1]$, define a "demand function" as:

$$D(x) \coloneqq \Pr_{\mathbf{y}}[x \le y]$$

• Define an expected revenue $f(x) \coloneqq xD(x)$.

• Denote
$$\mu_i \coloneqq f\left(\frac{i}{K}\right)$$
, and $\mu^* \coloneqq \max_i \mu_i$, $\Delta_i = \mu^* - \mu_i$.

UC SANTA BARBARA

Assumptions

We make 2 assumptions:

• Assumption 1: the expected revenue $f(x) \coloneqq xD(x)$ has a unique global maximum at $x^* \in (0,1)$.

• Assumption 2: $f''(x^*) < 0$. (Local concavity)

Stochastic Valuation: theorem

Based on these two assumptions, we have:

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global maximum $x^* \in (0,1)$, and that $f''(x^*)$ is defined and strictly negative, the strategy UCB1 with $K = \lceil (n/\log n)^{1/4} \rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Here n is T in our notations.

• UCB-1:

Play machine j that maximizes $\bar{x}_j + \sqrt{\frac{2 \ln n}{n_j}}$, where \bar{x}_j is the average reward obtained from machine j, n_j is the number of times machine j has been played so far, and n is the overall number of plays done so far.

Stochastic Valuation: proof

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global maximum $x^* \in (0,1)$, and that $f''(x^*)$ is defined and strictly negative, the strategy UCB1 with $K = \lceil (n/\log n)^{1/4} \rceil$ achieves expected regret $O(\sqrt{n \log n})$.

We decompose the reward as 4 stages:

- 1. Reward of UCB-1;
- 2. Reward of x^* , where $x^* = argmax_x f(x)$;
- 3. Reward of $\frac{j^*}{K}$, where $j^* = \operatorname{argmin}_j |x^* \frac{j^*}{K}|$;

4. Reward of p^* , where $p^* = argmax_p \sum_t p \cdot 1[p \le y_t]$. Note: p^* is random.

• $\mathbb{E}[1] \leq \mathbb{E}[3] \leq \mathbb{E}[2] \leq \mathbb{E}[4]$, and 3 regrets in between.

UC SANTA BARBARA

Bandits Regret

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global maximum $x^* \in (0,1)$, and that $f''(x^*)$ is defined and strictly negative, the strategy UCB1 with $K = \lceil (n/\log n)^{1/4} \rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Regret Part 1: UCB-1 v.s.
$$\frac{j^*}{K}$$
 closest to x^*

• \leq Regret of UCB-1

Theorem 1. For all K > 1, if policy UCB1 is run on K machines having arbitrary reward distributions P_1, \ldots, P_K with support in [0, 1], then its expected regret after any number n of plays is at most

$$\begin{bmatrix} 8 \sum_{i:\mu_i < \mu^*} \left(\frac{\ln n}{\Delta_i}\right) \end{bmatrix} + \left(1 + \frac{\pi^2}{3}\right) \left(\sum_{j=1}^K \Delta_j\right)$$

• $\Delta_i = \mu^* - \mu_i$, where $\mu_i = f\left(\frac{i}{K}\right)$, $\mu^* = \max_i \mu_i$
Note: we may assume $\mu_{j^*} = \mu^*$ without losing of generality

Bandits Regret

$$\left[8\sum_{i:\mu_i<\mu^*}\left(\frac{\ln n}{\Delta_i}\right)\right] + \left(1 + \frac{\pi^2}{3}\right)\left(\sum_{j=1}^K \Delta_j\right) \quad \rightarrow \quad O(\sqrt{n \log n})$$

• How to bound Δ_i ? ----- 2 assumptions: unique x^* , negative $f''(x^*)$

Lemma 3.11. There exist constants C_1, C_2 such that $C_1(x^* - x)^2 < f(x^*) - f(x) < C_2(x^* - x)^2$ for all $x \in [0, 1]$.

Corollary 3.12. $\Delta_i \geq C_1(x^* - i/K)^2$ for all *i*. If $\tilde{\Delta}_0 \leq \tilde{\Delta}_1 \leq \ldots \leq \tilde{\Delta}_{K-1}$ are the elements of the set $\{\Delta_1, \ldots, \Delta_k\}$ sorted in ascending order, then $\tilde{\Delta}_j \geq C_1(j/2K)^2$.

Corollary 3.13. $\mu^* > x^*D(x^*) - C_2/K^2$.

See Notes

Discretization Error

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global maximum $x^* \in (0,1)$, and that $f''(x^*)$ is defined and strictly negative, the strategy UCB1 with $K = \lceil (n/\log n)^{1/4} \rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Regret Part 2:
$$\frac{j^*}{K}$$
 closest to x^* v.s. x^*

Corollary 3.13. $\mu^* > x^* D(x^*) - C_2/K^2$.

• Cumulative error
$$\leq \frac{C_2}{K^2} \cdot n = O(\sqrt{n \log n})$$

UC SANTA BARBARA

Ex ante regret and ex post regret

Regret Part 3: x^* v.s. $p^* = argmax_p \sum_t p \cdot 1[p \le y_t]$ • i.e., max expected revenue v.s. expected max revenue

f(x*) is called **ex ante** revenue
which is optimal before knowing y_t.

•
$$\frac{1}{n} \sum_{t} p^* \cdot 1[p^* \le y_t]$$
 is called **ex post** revenue
• Which is optimal after knowing all y_t .

•
$$\mathbb{E}\left[\max_{p}\frac{1}{n}\sum_{t}p \cdot \mathbf{1}[p \le y_{t}]\right] \ge f(x^{*})$$

• Ex ante regret \rightarrow training; ex post regret \rightarrow testing

UC SANTA BARBARA

Ex ante regret and ex post regret

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global maximum $x^* \in (0,1)$, and that $f''(x^*)$ is defined and strictly negative, the strategy UCB1 with $K = \lceil (n/\log n)^{1/4} \rceil$ achieves expected regret $O(\sqrt{n \log n})$.

Regret Part 3: $x^* \vee s. p^* = argmax_p \sum_t p \cdot 1[p \le y_t]$

• Define:
$$\rho(x) = \sum_{t=1}^{n} x \cdot \mathbf{1}[x \le y_t]$$

• $\mathbb{E}[\rho(x^*)] = f(x^*)$

•
$$\Rightarrow \rho(x) \ge \rho(p^*) - n(p^* - x), \forall x < p^*.$$

See Notes

22

- $\Rightarrow \int_0^1 \Pr[\rho(x) \rho(x^*) > \lambda] dx \ge \frac{\lambda}{n} \Pr[\rho(p^*) \rho(x^*) > 2\lambda]$
- Chernoff Bound: $\Pr[\rho(x) \rho(x^*) > \lambda] < \exp\{-\lambda^2/2n\}$
 - for martingale

•
$$\Rightarrow \Pr[\rho(p^*) - \rho(x^*) > 2\lambda] < \min\{1, \frac{n}{\lambda}\exp\{-\lambda^2/2n\}\}$$

Computer Science Department

Ex ante regret and ex post regret

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global maximum $x^* \in (0,1)$, and that $f''(x^*)$ is defined and strictly negative, the strategy UCB1 with $K = \lceil (n/\log n)^{1/4} \rceil$ achieves expected regret $O(\sqrt{n \log n})$.

$$\begin{aligned} \Pr[\rho(p^*) - \rho(x^*) > 2\lambda] &< \min\{1, \frac{n}{\lambda} \exp\{-\lambda^2/2n\}\} \\ \Rightarrow \mathbb{E}[\rho(p^*) - \rho(x^*)] &\leq \int_0^{+\infty} \Pr[\rho(p^*) - \rho(x^*) > y] \, dy \\ &< \int_0^{+\infty} \min\left\{1, \frac{2n}{y} \exp\left\{-\frac{y^2}{2n}\right\}\right\} dy \\ &< \int_0^{\sqrt{4n\log n}} dy + \int_{\sqrt{4n\log n}}^{+\infty} \frac{2n}{\sqrt{4n\log n}} \exp\left\{-\frac{y^2}{2n}\right\} dy \\ &= O(\sqrt{n\log n}) \end{aligned}$$

UC SANTA BARBARA

Recap: stochastic valuations

- 2 Methods:
 - Discretization: K uniformly
 - Bandit algorithm: UCB-1
- 3 steps of regret bounds:
 - Regret of UCB-1
 - Error of discretization
 - Ex post revenue ex ante revenue
- Skills of proving:
 - Smoothness & Strong concavity \rightarrow quadratic bounds
 - Distance-dependent regret of UCB-1
 - 2nd definition of expectation

Outline

- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Adversarial Valuation: main idea

- Main idea: discretization + **adversarial** bandits
- How to discretize prices?
 - Uniformly divide into K prices: $\{\frac{1}{\kappa}, \frac{2}{\kappa}, \dots, \frac{i}{\kappa}, \dots, 1 \frac{1}{\kappa}, 1\}$
- Which bandit algorithm to use?
 - In this paper, they use **EXP-3**.
- How to bound the regret?
 - Carefully select K to balance interior and exterior regret.

UC SANTA BARBARA

Adversarial Bandits

- The reward $r_i(t)$ of choosing action *i* at time *t* is arbitrarily determined in advance, but in secret.
- Regret: compare with the optimal fixed action.
 - Here ex ante regret = ex post regret.
- Therefore: requires active explorations.
 - Randomness of algorithm.
 - In comparison, UCB-1 has passive explorations.

EXP-3

Algorithm Exp3 **Parameters:** Real $\gamma \in (0, 1]$. Initialization: $w_i(1) = 1$ for $i = 1, \ldots, K$. For each t = 1, 2, ...1. Set $p_i(t) = (1 - \gamma) \frac{w_i(t)}{\sum_{i=1}^K w_i(t)} + \frac{\gamma}{K} \qquad i = 1, \dots, K.$ 2. Draw i_t randomly accordingly to the probabilities $p_1(t), \ldots, p_K(t)$. 3. Receive reward $x_{i_t}(t) \in [0, 1]$. 4. For j = 1, ..., K set $\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t, \\ 0 & \text{otherwise.} \end{cases}$ $w_i(t+1) = w_i(t) \exp\left(\gamma \hat{x}_i(t)/\mathbf{K}\right)$.

• First efficient algorithm for adversarial bandits.

Computer Science Department

Regret Bound

THEOREM 3.1. For any K > 0 and for any $\gamma \in (0, 1]$,

$$G_{\max} - \mathbf{E}[G_{\mathbf{Exp3}}] \le (e-1)\gamma G_{\max} + \frac{\frac{K \ln K}{\gamma}}{\gamma}$$

• Let
$$\gamma = \min\left\{1, \sqrt{\frac{K \ln K}{(e-1)n}}\right\}$$
, and RHS $\leq 2\sqrt{e-1}\sqrt{nK \ln K}$

Also, the discretization error $\leq n \cdot \frac{1}{K} = \frac{n}{K}$.

• To balance $\sqrt{nK \ln K}$ and $\frac{n}{K}$, let $K = \left[\frac{n}{\ln n}\right]^{1/3}$, then the regret bound is $O(n^{2/3}(\ln n)^{1/3})$.

UC SANTA BARBARA

Outline

- Problem setup
- Pricing with stochastic valuations
- Pricing with adversarial valuations
- Pricing with a fixed valuation

Fixed Valuation

- Method: search a feasible interval [a, b] with ϵ -length steps: $a, a + \epsilon, a + 2\epsilon, ..., b \epsilon, b$.
 - Initialization: a=0, b=1, ϵ =1/2,
- If $a + k\epsilon$ is accepted, but $a + (k + 1)\epsilon$ is not, then:
 - $a \leftarrow a + k\epsilon$
 - $b \leftarrow a + (k+1)\epsilon$
 - $\epsilon \leftarrow \epsilon^2$
- Terminal: when b-a<1/n, always choose a afterwards.
 - First explore then exploit.

UC SANTA BARBARA

Computer Science Department

.

Fixed Valuation: regret bound

Theory: this algorithm achieves regret $O(\log \log n)$.

- Proof sketch: we call each update of [a, b] a phase.
- 1. As ϵ from $\frac{1}{2}$ to $\frac{1}{n}$, there are $O(\log \log n)$ phases.
- Only one rejection in each phase.
 -- regret of rejection = O(log log n).
- 3. Within each phase, $b a = \sqrt{\epsilon}$, at most $\frac{\sqrt{\epsilon}}{\epsilon} = \frac{1}{\sqrt{\epsilon}}$ buys.
- 4. Within each phase, regret is at most $\sqrt{\epsilon} \times \frac{1}{\sqrt{\epsilon}} = 1$.

-- regret of acceptance = $O(\log \log n)$

UC SANTA BARBARA

Why not binary search?

- Binary search is most informative.
 - But what is "informative"?
 - Do we need "informative"?

Claim: a binary search will suffer from $\Theta(\log n)$ regret.

- For $O(\log n)$, the claim is trivial.
- For $\Omega(\log n)$, consider the case where valuation $=\frac{1}{2}$.
 - Round 1: $x=1/2 \rightarrow$ accepted.
 - Afterwards: always rejected until stopping explorations.
 - Times of explorations: $1/2 \rightarrow 1/n$, $O(\log n)$
 - Regret of each explorations: 1/2.

Take-home ideas

- Different settings of dynamic pricing problems.
 - Fixed/stochastic/adversarial valuations.
 - Regret: $O(\log \log n), \tilde{O}(\sqrt{n \log n}), \tilde{O}(n^{2/3}).$
- Approach: discretization + multi-armed bandits.
 - Stochastic bandits: UCB-1, with distance-dependent regret.
 - Adversarial bandits: EXP-3.