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1 Proof of Lemma 3.11

Proof. For a small neighborhood of x∗, i.e., (x∗ − ε, x∗ + ε), we have:

� Local strongly concavity of f(x):

∃A1 > 0, A1(x
∗ − x)2 ≤ f(x∗)− f(x).

� Local smoothness:
∃A2 > 0, f(x∗)− f(x) ≤ A2(x

∗ − x)2.

For the rest part of [0, 1], i.e., {x ∈ [0, 1], |x∗ − x| ≥ ε}, we have f(x∗) − f(x) > 0. Since
this is a compact set, we have: min f(x∗)− f(x) > 0. Therefore, we further have:

� Let B1 = min f(x∗)− f(x) > 0, and we have:

B1(x
∗ − x)2 ≤ f(x∗)− f(x).

� Let B2 = max f(x∗)−f(x)
ε2

> 0, and we have:

f(x∗)− f(x) ≥ B2(x
∗ − x)2.

Now, let C1 = min{A1, B1}, C2 = max{A2, B2}, and the lemma holds.

2 Proof of Corollary 3.12

Proof. From Lemma 3.11, we have: C1(x
∗ − x)2 ≤ f(x∗)− f(x). Then,

� Replace x with i
K , and we get

f(x∗)− µi ≥ C1(x
∗ − i

K
)2.
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Figure 1: Corollary 3.12 Part 2

In the original paper, the authors claim a µ∗ − µi ≥ C1(x
∗ − i

K )2, which is at least
NOT a direct derivation of Lemma 3.11. In order to mend the proof, we may firstly
notice that f(x∗) − µ∗ ≤ C2 · 1

K2 . By assuming that the smallest C2, i.e., the exact
quadratic upper bound of f(x∗)− f(x), is just slightly larger than the largest C1, i.e.
the exact quadratic lower bound of f(x∗) − f(x), we know that (x∗ − i

K )2 is much

larger than C2
K2 for most i, and the inequality of Corollary 3.12 holds for a new C1.

� Denote j∗ = arg minj | jK − x
∗|. Figure 1 illustrate the situation. We can see that

d0 ≥ 0, d1 ≥ 2K
, di+2 ≥ 1

K + di. Therefore, we have di ≥ i
2K .

3 Proof of Corollary 3.13

Proof. We have:
f(x∗)− f(x) ≤ C2(x

∗ − x)2

⇒
↑

x= j∗
K

f(x)− C2(x
∗ − j∗

K
)2 ≤ f(

j∗

K
)

⇒
↑

|x∗− j∗
K
|≤ 1

K

f(x∗)− C2 ·
1

K2
≤ µ∗.
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4 Proof of Theorem 3.14

Proof. On the one hand, we have:∑
i:µi<µ∗

1

∆i
≤

∑
i

1

C1 · ( i
2K )2

=
4K2

C1

∑
i

1

i2

≤ 2π2

3 · C1

√
n

log n
.

Here the first inequality comes from Corollary 3.12, and the last line comes from the fact
that

∑
i=1∞

1
i2

= π2

6 . On the other hand, we have:

K∑
j=1

∆j ≤ K = (
n

log n
)
1
4 .

Therefore, we have:

Reg ≤ (8
∑

i:µi<µ∗

log n

∆i
) + (1 +

π2

3
)(

K∑
j=1

∆j) = O(
√
n log n).

5 Proof of E[ρ(p∗)− ρ(x∗)]
Proof. Recall that p∗ := arg maxx ρ(x) and that ρ(x) =

∑n
t=1 x · 1(x ≤ yt). Since x∗ is

independent to yt’s, we have: E[ρ(x∗)] = f(x∗) = maxx f(x). Therefore, for any x ≤ p∗,
we have:

ρ(x) =
∑

t = 1nx · 1(x ≤ yt)

≥
↑

p∗≥x

n∑
t=1

x · 1(p∗ ≤ yt)

=
n∑
t=1

p∗ · 1(p∗ ≤ yt)−
n∑
t=1

(p∗ − x) · 1(p∗ ≤ yt)

≥ ρ(p∗)− n(p∗ − x).

Hence,
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∫ 1

0
Pr[ρ(x)− ρ(x∗) > λ]dx ≥

∫ 1

0
Pr[ρ(p∗)− n(p∗ − x)− ρ(x∗) > λ]dx

≥
∫ 1

0
Pr[{ρ(p∗)− ρ(x∗) > 2λ} ∩ {n(p∗ − x) ≤ λ}]dx

≥ λ

n
Pr[ρ(p∗)− ρ(x∗) > 2λ].

According to Chernoff-Hoeffding Inequality (for martingales), we have:

Pr[ρ(p∗)− ρ(x∗) > λ] < exp{−λ
2

2n
}.

Therefore, we have:

Pr[ρ(p∗)− ρ(x∗) > 2λ] ≤ min{1, n
λ

exp(−λ
2

2n
)}.

Hence

E[ρ(p∗)− ρ(x∗)] ≤
∫ +∞

0
Pr[ρ(p∗)− ρ(x∗) > y]dy

≤
∫ +∞

0
min{1, n

y
exp(− y

2

2n
)}dy

≤
∫ √4n logn

0
1dy +

∫ +∞

√
4n logn

2n√
4n log n

exp(− y
2

2n
)dy

= O(
√
n log n).

(1)

The first inequality of Equation 1 is due to the second definition of expectation: for a
random variable X ≥ 0, we have:

E[X] =

∫ +∞

0
xP (x)dx

=

∫ +∞

0
P (x)

∫ x

0
1dydx

=

∫ +∞

0
1dy

∫ +∞

y
p(x)dx

=

∫ +∞

0
1dy · Pr[X ≥ y]

=

∫ +∞

0
Pr[X ≥ y]dy.
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The last line of Equation 1 comes from the property of Gaussian distribution:
∫ +∞
t exp(− z2

2 )dz ≤
exp(− t2

2
)

t . Based on this observation, the second term of the second last line of Equation 1
can be upper bounded by 1

2n logn .
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