Notes: Dynamic Pricing in Different Valuation Models

Jianyu Xu

Mar 31, 2021

1 Proof of Lemma 3.11

Proof. For a small neighborhood of x^{*}, i.e., $\left(x^{*}-\epsilon, x^{*}+\epsilon\right)$, we have:

- Local strongly concavity of $f(x)$:

$$
\exists A_{1}>0, A_{1}\left(x^{*}-x\right)^{2} \leq f\left(x^{*}\right)-f(x) .
$$

- Local smoothness:

$$
\exists A_{2}>0, f\left(x^{*}\right)-f(x) \leq A_{2}\left(x^{*}-x\right)^{2} .
$$

For the rest part of $[0,1]$, i.e., $\left\{x \in[0,1],\left|x^{*}-x\right| \geq \epsilon\right\}$, we have $f\left(x^{*}\right)-f(x)>0$. Since this is a compact set, we have: $\min f\left(x^{*}\right)-f(x)>0$. Therefore, we further have:

- Let $B_{1}=\min f\left(x^{*}\right)-f(x)>0$, and we have:

$$
B_{1}\left(x^{*}-x\right)^{2} \leq f\left(x^{*}\right)-f(x) .
$$

- Let $B_{2}=\frac{\max f\left(x^{*}\right)-f(x)}{\epsilon^{2}}>0$, and we have:

$$
f\left(x^{*}\right)-f(x) \geq B_{2}\left(x^{*}-x\right)^{2} .
$$

Now, let $C_{1}=\min \left\{A_{1}, B_{1}\right\}, C_{2}=\max \left\{A_{2}, B_{2}\right\}$, and the lemma holds.

2 Proof of Corollary 3.12

Proof. From Lemma 3.11, we have: $C_{1}\left(x^{*}-x\right)^{2} \leq f\left(x^{*}\right)-f(x)$. Then,

- Replace x with $\frac{i}{K}$, and we get

$$
f\left(x^{*}\right)-\mu_{i} \geq C_{1}\left(x^{*}-\frac{i}{K}\right)^{2} .
$$

Figure 1: Corollary 3.12 Part 2

In the original paper, the authors claim a $\mu^{*}-\mu_{i} \geq C_{1}\left(x^{*}-\frac{i}{K}\right)^{2}$, which is at least NOT a direct derivation of Lemma 3.11. In order to mend the proof, we may firstly notice that $f\left(x^{*}\right)-\mu^{*} \leq C_{2} \cdot \frac{1}{K^{2}}$. By assuming that the smallest C_{2}, i.e., the exact quadratic upper bound of $f\left(x^{*}\right)-f(x)$, is just slightly larger than the largest C_{1}, i.e. the exact quadratic lower bound of $f\left(x^{*}\right)-f(x)$, we know that $\left(x^{*}-\frac{i}{K}\right)^{2}$ is much larger than $\frac{C_{2}}{K^{2}}$ for most i, and the inequality of Corollary 3.12 holds for a new C_{1}.

- Denote $j^{*}=\arg \min _{j}\left|\frac{j}{K}-x^{*}\right|$. Figure 1 illustrate the situation. We can see that $d_{0} \geq 0, d_{1} \geq \frac{2 K}{,} d_{i+2} \geq \frac{1}{K}+d_{i}$. Therefore, we have $d_{i} \geq \frac{i}{2 K}$.

3 Proof of Corollary 3.13

Proof. We have:

$$
\begin{aligned}
& f\left(x^{*}\right)-f(x) \leq C_{2}\left(x^{*}-x\right)^{2} \\
& \underset{\uparrow}{\Rightarrow} f(x)-C_{2}\left(x^{*}-\frac{j^{*}}{K}\right)^{2} \leq f\left(\frac{j^{*}}{K}\right) \\
& x=\frac{j^{*}}{K} \\
& \underset{\uparrow}{\Rightarrow} f\left(x^{*}\right)-C_{2} \cdot \frac{1}{K^{2}} \leq \mu^{*} . \\
& \left|x^{*}-\frac{j^{*}}{K}\right| \leq \frac{1}{K}
\end{aligned}
$$

4 Proof of Theorem 3.14

Proof. On the one hand, we have:

$$
\begin{aligned}
\sum_{i: \mu_{i}<\mu^{*}} \frac{1}{\Delta_{i}} & \leq \sum_{i} \frac{1}{C_{1} \cdot\left(\frac{i}{2 K}\right)^{2}} \\
& =\frac{4 K^{2}}{C_{1}} \sum_{i} \frac{1}{i^{2}} \\
& \leq \frac{2 \pi^{2}}{3 \cdot C_{1}} \sqrt{\frac{n}{\log n}}
\end{aligned}
$$

Here the first inequality comes from Corollary 3.12, and the last line comes from the fact that $\sum_{i=1 \infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}$. On the other hand, we have:

$$
\sum_{j=1}^{K} \Delta_{j} \leq K=\left(\frac{n}{\log n}\right)^{\frac{1}{4}}
$$

Therefore, we have:

$$
R e g \leq\left(8 \sum_{i: \mu_{i}<\mu^{*}} \frac{\log n}{\Delta_{i}}\right)+\left(1+\frac{\pi^{2}}{3}\right)\left(\sum_{j=1}^{K} \Delta_{j}\right)=O(\sqrt{n \log n})
$$

5 Proof of $\mathbb{E}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)\right]$

Proof. Recall that $p^{*}:=\arg \max _{x} \rho(x)$ and that $\rho(x)=\sum_{t=1}^{n} x \cdot \mathbb{1}\left(x \leq y_{t}\right)$. Since x^{*} is independent to y_{t} 's, we have: $\mathbb{E}\left[\rho\left(x^{*}\right)\right]=f\left(x^{*}\right)=\max _{x} f(x)$. Therefore, for any $x \leq p^{*}$, we have:

$$
\begin{aligned}
\rho(x) & =\sum_{\substack{ \\
p^{*} \geq}} t=1^{n} x \cdot \mathbb{1}\left(x \leq y_{t}\right) \\
& \geq \sum_{t=1}^{n} x \cdot \mathbb{1}\left(p^{*} \leq y_{t}\right) \\
& =\sum_{t=1}^{n} p^{*} \cdot \mathbb{1}\left(p^{*} \leq y_{t}\right)-\sum_{t=1}^{n}\left(p^{*}-x\right) \cdot \mathbb{1}\left(p^{*} \leq y_{t}\right) \\
& \geq \rho\left(p^{*}\right)-n\left(p^{*}-x\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} \operatorname{Pr}\left[\rho(x)-\rho\left(x^{*}\right)>\lambda\right] d x & \geq \int_{0}^{1} \operatorname{Pr}\left[\rho\left(p^{*}\right)-n\left(p^{*}-x\right)-\rho\left(x^{*}\right)>\lambda\right] d x \\
& \geq \int_{0}^{1} \operatorname{Pr}\left[\left\{\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>2 \lambda\right\} \cap\left\{n\left(p^{*}-x\right) \leq \lambda\right\}\right] d x \\
& \geq \frac{\lambda}{n} \operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>2 \lambda\right]
\end{aligned}
$$

According to Chernoff-Hoeffding Inequality (for martingales), we have:

$$
\operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>\lambda\right]<\exp \left\{-\frac{\lambda^{2}}{2 n}\right\} .
$$

Therefore, we have:

$$
\operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>2 \lambda\right] \leq \min \left\{1, \frac{n}{\lambda} \exp \left(-\frac{\lambda^{2}}{2 n}\right)\right\} .
$$

Hence

$$
\begin{aligned}
\mathbb{E}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)\right] & \leq \int_{0}^{+\infty} \operatorname{Pr}\left[\rho\left(p^{*}\right)-\rho\left(x^{*}\right)>y\right] d y \\
& \leq \int_{0}^{+\infty} \min \left\{1, \frac{n}{y} \exp \left(-\frac{y^{2}}{2 n}\right)\right\} d y \\
& \leq \int_{0}^{\sqrt{4 n \log n}} 1 d y+\int_{\sqrt{4 n \log n}}^{+\infty} \frac{2 n}{\sqrt{4 n \log n}} \exp \left(-\frac{y^{2}}{2 n}\right) d y \\
& =O(\sqrt{n \log n}) .
\end{aligned}
$$

The first inequality of Equation 1 is due to the second definition of expectation: for a random variable $X \geq 0$, we have:

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{+\infty} x P(x) d x \\
& =\int_{0}^{+\infty} P(x) \int_{0}^{x} 1 d y d x \\
& =\int_{0}^{+\infty} 1 d y \int_{y}^{+\infty} p(x) d x \\
& =\int_{0}^{+\infty} 1 d y \cdot \operatorname{Pr}[X \geq y] \\
& =\int_{0}^{+\infty} \operatorname{Pr}[X \geq y] d y .
\end{aligned}
$$

The last line of Equation 1 comes from the property of Gaussian distribution: $\int_{t}^{+\infty} \exp \left(-\frac{z^{2}}{2}\right) d z \leq$ $\frac{\exp \left(-\frac{t^{2}}{2}\right)}{t}$. Based on this observation, the second term of the second last line of Equation 1 can be upper bounded by $\frac{1}{2 n \log n}$.

