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What's dynamic pricing?
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Deal

No Deal

Deal w/ highest price



Problem Setting

Fort =1,2,..,T:
* The nature chooses a feature x;;

™ i

* The firm observes x;; » The customer observes x;;
* The firm proposes a * The customer valuates the
price p, = m¢(x¢); | productasve(xy)

* The customer compares p,
and v,, and decides y, =

[(ve = pe):

 The firm receives a
reward ry = p; * y;
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Recap: Contextual Bandit

Fort=1,2....,T:
0. Nature draws (x:, r¢) from dist. D over X’ x [0, 1]4.

1. Observe context x; € X. [e.g., user profile, search query]
2. Choose action a; € A. [e.g., ad to display]
3. Collect reward rt(at) € [O, 1]. le.g., 1 if click, O otherwise]

Task: choose a;'s that yield high expected reward (w.r.t. D).

Contextual: use features x; to choose good actions a;.

Bandit: r.(a) for a # a; is not observed.

https://www.cs.columbia.edu/~djhsu/papers/ilovetoconbandits-slides.pdf
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Basic Assumptions

- x; ~ Py c RY independently and identically;
* Py is unknown to us
* Py is supported by a bounded set X.

cv(x) = ag + 03 x + z,, or v(x) = ubx + z,
* here z; are marketing shocks (noises)
* z; drawn i.i.d. from a distribution with O-mean and CDF F
* F is known to us

Linear

Achieve- *Up €EQ = {,Ll € R4+ ”.u”O = So, “.ulll = W}
-able * 5 IS a sparsity factor, and s, = d + 1 in a dense case
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Technical Assumptions

* Assumption 2.1: The noise CDF F(v) Is:
* Known!
* strictly increasing;
* F(v) and (1 — F(v)) are both log-concave w.r.t. v.
* E.g.: normal, uniform, Laplace, exponential, logistic,...

* Assumption 2.2: The distribution Py satisfies:
By op [X] =0,VE=12,...,T,...
* Normalized by «,
* 2 = E,,-p, [x:x{ ] With any singular value Cpin < 0; < Cax
* Here Cpax = 1 = Cpyin, > 0 are constants.
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Recap: settings
Fort =1,2,..,T:
*Samples x; ~ Py, 1.1.d.

™ i

* The firm observes x;; » The customer observes x;;
* Proposes a price p; = - Valuates the product as
me(xe): ve (X)) =xipo+ze |

« Compares p; and v;, and
decides y, = I(v; = p;);
*P(yr =1) =1 - F(p: — x{ ko)

- Receives areward ry =
Pt - Yt
* Elrelxe, pe] = pt(l — F(pe - x?uo))

UC SANTA BARBARA
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Greedy function g(v)

* Reward is random, so we maximize its expectation.
“Elrn @] =p-(1-F@p - ulz,))

- Define g(v) £ argmax, p - (1 — F(p — v)).
« A greedy pricing function.

- Therefore, pf = g(ubx,).
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Expected Regret

* We define the expected regret as:

1
Regret (1) = max E lz ( t = py) — pel(vy > 'Pt))]

prp €12 =1
PyeQ(X) =

* This is a worst-case regret w.r.t. u, and Py
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Main Results

* An algorithm of O(sylogd - log T) regret.
» Under Assumption 2.1 and 2.2

- A lower bound of Q(se(logd + logT)).

*They are almost matching.
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Recap: notations
Notton —Joon

~

Xt, Xt Feature vector; x; padding an “1”

D, P, Ut Price; price proposed at time t; valuation at time ¢
Valuation parameter; 8, padding an

Zy Noise
Reward (r: = p; - y;); decision (buy: 1; not buy: 0)

F,f Noise CDF; noise PDF

So Sparsity

Y, Covaxr Conin 2 2 E[xxT], with Cpaxlg Z 2 = Crip > 0

g() g) £ argmax,p-(1—F(p —v))
Pt pi 2 g(upXe)
Py, X Distribution of x; support of Py

Q,w Parameter domain, £{-norm-bound of any parameter
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Idea of Algorithm Designing

* Max likelihood estimator (MLE)
* A well-parameterized model

» Greedy policy

 Make best use of estimators

* Doubling Episodes
* Fewer parameter updates
 Easier analysis ...

» Regularization parameter
* Promote sparsity structure in the estimated parameter
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Maximum Likelihood Estimation

* The negative log-likelihood function:

1 n
L(p) = _EZ [(y; =1) log(l — F(p: — f?u))
t=1

+1(y, = 0) log(F (pe — %{ u))

 Strongly convex with high probability.
* (See Proposition A.2.)
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Greedy Policy
* Define g(v) £ argmax,E[r.(p)]
= argmax, p - (1-F(p —v)).
P = g(Ho%e).

- We assume p, = g(&! u.) for some u,, without losing
generality.
* If u; is approaching u, then the regret will be small.
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Doubling Episodes

* The first episode: t; = 0, Nno periods.
* Initialize all parameters to O.

*Fork =2,3,... let 7, = 271,

* Within each episode, we adopt the same y;,.
- Remember our pricing policy: p, = g(& u,) for some u,

Department of Computer Science UC SANTA BAR BARA



16

AI g Ori'l'h m ‘I : RM I- P (Regularized Maximum Likelihood Pricing)

Double
episodes:

Tk =
2k—1

Update parameter:
Price greedily:

i = arg min {L(w) + A llpll1}
lulissw

= g(xt 1 ) where L(1) being
negative log-likelihood

=T rk
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Algorithm 1: RMLP
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Input: (at time 0) function g, regularizations Ag, W (bound on ||ugl1),

Input: (arrives over time) covariate vectors {Z; }ten
Output: prices {p; }ren

1: 1y 1, pp + 0, ﬂl'i—[]

2: for each episode k =2.3.... do

3 Set the length of k-th episode: 7 + 2k=1,
4

Update the model parameter estimate [i* using the regularized ML estimator obtained

from observations in the previous episode:

A" = arg min {£(u) + Agl|pll1 }

lpllr =W
with
1 T—1
£ = —=— 3 {tty = 1)log(1 ~ F(pr —p-30) + 1ot =
T =T

5:  For each period ¢ during the k-th episode, set

pe + g(A* - &)

1) log(F(p — - :f:m} )

(8)

(10)

Algorithm 1: RMLP policy for dynamic pricing

Department of Computer Science
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Parameter 4, Chosen

» A, constraints the £; —norm of the estimator fi*

logd

- We select A, = 4uy, , Where

Tk—1

Uy = max{log "F(—2W),—log’ (1 — F(ZW))}.

Remember that ||ull; < W.

Department of Computer Science UC SANTA BAR BARA
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Remarks on RMLP

* Deterministic
- Exploitation by greedy policy g(u'%)
 Exploration naturally through random x; and z;

* Oblivious

* Only rely on data from previous episode
« Remark: previous episode is half as large as the whole
 Suitable for perishable data

- Efficient
* Fewer updates of estimators

*Low regret
Department of Computer Science UC SANTA BAR BARA
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Regret Analysis — Main Idea

* Step 1: bound estimation error ||i — uell,
« Tool 1: L(f;) + Allf|l; is optimal;
« Tool 2: L(u) is concentrated (Azuma-Hoeffding);
» Tool 3: L(w) is strongly convex (E[x;x!] > Cpin - I > 0);
- Step 2. bound pricing difference |p; — p;|
* Tool 4: g is Lipschitz;
*pi —pe = 9(& o) — g(FL ) < % (7 — po)l.
- Step 3: bound reward difference r.(p{) — r:(p;)
« Tool 5: 1:(p) = p(1 — F(p — %! uy)) is strongly convex;
* 11(pr) —1e(p) = 0((19; - pt)z)-
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Bound estimation error || — |-

Proposition 8.1 (Estimation Error). Consider linear model (1) with po = (fo, ag) € 2, under As-
sumptions 2.1 and 2.2

2. Let i be the solution of optimization problem (33) with A = 4wy +/(logd) /n.
Then, there exist positive constants cg and C such that, for n > egsglog(d), the following ineguality
holds with probability at least 1 — 1/d — 9¢ "/ (c050) .

- 5 16spA2
17 — poll3 < 5—5—- (35)
z.C

“min

Proposition 8.3. Under assumptions of Proposition 5.1, there exrist constants ¢,cy > 0, such that
for n = e1d, the following holds true:

16(sg + 1)A?

E(|liz - Pfﬂ”g} < Fﬁ_,(:'ﬁlin + AW 2Zemen” (37)
Therefore, we may divide n into 3 cases:
¢« 1< n<cysylog(d) (Where n is small)
* (ySplog(d) <n <cid (Where n trades off with §)
c n=cd (Where n is large but § is small)

21
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Main idea of Proposition 8.1 & 8.3

* Second-order Toylor\exponsion of L(u):

— — —

~ ~ 7~ - ~

( A N 1, ° o ~
L(po) — L(p) )= —("Fﬁ{ﬂ-n)}ﬂ- — po) — %ﬂ — po, V2L(2) (1 — po)))

* Red circle is bounded by
L) + Al < L(po) + Mlpollr
- and then by triangular inequalities (parameterized by s,).

* Blue circle is bounded by concentration inequality
A AMES
t=1
* Black circle bounds the quadratic error:
VL) = LXTR
* E[xx"] = Crpinl
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Proof details

* See liveboard...

Department of Computer Science
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Recap- RMLP

Assumpftion Proof

e |.I.D. features e Bound estimation error

« Parameterized linear 279 —order Taylor expansion
model « Hoeffding Concenftration

« Strong convexity

 Feasible domain
« Support set

« KnownF : : :
« Triangular inequality

 Upper & Lower

bounds on E[xx'] « Bound price difference

. * |In the same order of estimation
Design error
 Episodes :
. Iv\pLE « Boundregret
. R ari « Quadratic to the pricing
egUICiiiZOr difference

« Greedy
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Lower bound on regret Q(sylogT)

*SUppoOse we can observe v, In each
round...
- For each time: vy = %! ny + z,
* A linear regression!

*What is the lower bound of online linear
regression?e

Department of Computer Science UC SANTA BAR BARA
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Lower bound on regret Q(logT)

* Assume z, ~ N(0,0%), and we have:

T T d
min Regret_(7") > C"{SU log (—) + min [— so log (—)} } :
mell S0 S0 S0

(Theorem 5.1)
- Key theorem towards the lower bound.

Department of Computer Science UC SANTA BAR BARA
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Lower bound on regret Q(logT)

General idea: Reductions
* Minimax regret - minimax estimation error

 Estimation error - distinguish in a §-packing
parameter seft
* Far enough to enlarge regret
* Close enough to hardly distinguish
*Le Cam’s method

- Lower bound the error probability of distinguish
* Fano’s Inequality

Department of Computer Science UC SANTA BAR BARA



Fano’'s Inequality

e Fano's Lemma:

28

Lemma 11 (Fano) Let X,,...,X,, ~ P where P € {P,,...,Px}. Let ¢ be any function

of X1,...,X,, taking values in {1 ., N}. Let B = max;y; KL(PJ-, Py). Then

N
1 nf + log 2
ﬁg (W #3) = ( B log N )

Intuition:

* LHS: Probabillity of incorrectly distinguishing
(estimating) the distribution

* RHS: a high probability
* Increases as N goes larger
» Decreases as KL-divergence goes larger

Department of Computer Science UC SANTA BAR BARA
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Discussion: Why not Q(V/T)?

- An Q(VT) regret is necessary for generic
stochastic/adverserial contextual bandit problems.

* A “separability assumption” will reduce it to Q(logT):
- Constant reward gap between the best and the second best
actions.

* Pricing is continuous and thus NOT separable!

* Which assumption(s) leads to this logarithmic regrete

Department of Computer Science UC SANTA BAR BARA
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Which assumption qualifies Q(VT)?
* Linearitye

- Parametrizatione

*Known noise distributione

- Stochastic feature?

¢ Cmin > 02

Department of Computer Science UC SANTA BAR BARA



Which assumption qualifies Q(vVT)?

Linearitye  ---—-—-- NO.
* A nonlinear model:

v(xe) = P(Oo - d(xt) + o + 2t)
Theorem 6.3:

Theorem 6.3. Let v be log-concave and strictly increasing. Suppose that Assumptions 2.1 and 6.1

(or its alternative, Assumption 6.2) hold. Then, regret of the RMLP policy described as Algorithm 2
is of O(sglogd -logT).

» Assumption 6.1: define 2,4 = E[¢(x)$(x)"], and then
Cmax " | 2 Z¢ = Crin + I > 0.
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Which assumption qualifies Q(vVT)?

Parametrizatione -——--- Yes.

 For totally non-parametrized model, it is at
least as hard as contextual bandits.

- Q(VT) regret is necessary

* maybe not sufficient, due to an infinite action
sef.
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Which assumption qualifies Q(VT)?

Noise Distributione  -——--- Yes.

* A theorem in [BR12]:

Theorem 3.1 (General Regret Lower Bound). Define a problem class Cgeng = (P, Z,d) by letting
P =[3/4,5/4], Z =[1/3,1], and d(p; z) = 1/2+ z — zp. Then for any policy 1) setting prices in P,

and any T > 2, there exists a parameter z € Z such that

T
Regret(zacGenLBuT:w) > 4—\/8; .

-Is 0(V'T) achievable in our linear setting?

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice
model. Operations Research, 60(4), 965-980.
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Which assumption qualifies Q(vVT)?

e Theorem 7.1

Theorem 7.1. Consider the valuation model (1), where noises z; are generated from a distribution
Fr.o, with unknown mean m and variance o?. Under Assumption 2.2 and assuming that distri-

bution F), , satisfies Assumption 2.1, the regret of RMLP-2 policy is of O(sn(lng d)\/?) Further,
regret of any pricing policy in this case is Q(v/T).
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Algorithm: RMLP-2

Input: Pricing function g (corresponding to Fpy 1), regularlzatlom Ak; W (bound on |[po]1)
Input: (arrives over time) covariate vectors {Z; = (24, 1) }en
Output: prices {p; }1en
1: for each episode k=1,2,... do
2:  For the first period of the episode, offer the price uniformly at random from [0, 1].
3:  Denote by Aj the set of first periods in eplsc:-dea A
4:  Update the model parameter estimate [i* using the regularized ML estimator:

(@*,B*) = arg min {L(B, ) + Mgl el } (25)
1(ee/ B.8)|l <W

with
£n.8) = 5 3 { o= Dlowlt = P8 — - 3)) + Ly =~ los(F (B — - ) | (20
te Ay

5. For each period t during the k-th episode, set

1
pt ¢ EQ(#—’“ - T¢) (27)

L

Algorithm 3: RMLP-2 policy for dynamic pricing
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Which assumption qualifies Q(VT)?

Stochastic feature? ---—-- Not sure.
*In [CLPLT16], the features are adversarial.

2
*They achieves 0(T3) regret, based on EXP4.
* This seems suboptimal.

Cohen, M. C,, Lobel, I., & Paes Leme, R. (2020). Feature-based dynamic
pricing. Management Science.
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Which assumption qualifies Q(vVT)?

Crin > 02 ——- No.
*In this paper a Cp,i, helps prove O(logT)
regret.

» Without Cpin, an O(VT) regret bound is
guaranteed, but not necessary.

Theorem 4.2. Suppose that product feature vectors are generated independently from a probability
distribution Px with a bounded support X € R%. Under Assumption 2.1, the regret of RMLP policy

is of O(+/(logd)T).

*In our new works, we proved an O(logT)
regret without Cyip.
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Recap: which qualifies Q(V/T)?
 Parametrization?¢
* Known noise distribution?

« Stochasstic feature¢

L >0%
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Main Results

* Problem: dynamic pricing in high-dimensional features.
* Linear valuation
« Random feature
« Known and fixed noise distribution

* Algorithm: RMLP

* Max likelihood estimator with ¢,-regularizor

* Episode-based greedy policy

- Computationally efficient

« Easy to analysis (avoiding martingale concentrations)
* Upper regret bound: O(sylogd - logT)

- Lower regret bound: Q(sy log T)
* Nonlinear cases: 0(sglogd -logT )
* Unknown noise distribution

- Parametrized: 0(vT) and Q(VT)

« Unparametrized: 0(6T)
Department of Computer Science UC SANTA BAR BARA
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Next Steps

* Proposed by the authors:
* A tighter bound of upper & lower regret
* Uy (or ,) is not sparse but close to a sparse vector.
* Multiple-product sales at a time.

* Proposed by ourselves:
* Dynamic regret, and adaptive regret
« Adversarial features
* Is it still 0(logT)?
 Totally unparametrized model
- Is it Q(VT) or a(rs)e
* Is it harder than contextual bandits?
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