

Dynamic Pricing in High Dimensions

Adel Javanmard, Hamid Nazerzadeh

Reading group led by: Jianyu Xu

UC SANTA BARBARA

Department of Computer Science

What's dynamic pricing?

Department of Computer Science

Department of Computer Science

Recap: Contextual Bandit

For t = 1, 2, ..., T:

- 0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 1. Observe context $x_t \in \mathcal{X}$. [e.g., user profile, search query]
- 2. Choose action $a_t \in \mathcal{A}$. [e.g., ad to display]
- 3. Collect reward $r_t(a_t) \in [0, 1]$. [e.g., 1 if click, 0 otherwise]

Task: choose a_t 's that yield high expected reward (w.r.t. \mathcal{D}).

<u>Contextual</u>: use features x_t to choose good actions a_t . <u>Bandit</u>: $r_t(a)$ for $a \neq a_t$ is not observed.

https://www.cs.columbia.edu/~djhsu/papers/ilovetoconbandits-slides.pdf

Department of Computer Science

4

Basic Assumptions

I.I.D.	 x_t ~ P_X ⊂ ℝ^d independently and identically; P_X is unknown to us P_X is supported by a bounded set X.
Linear	 v_t(x) = α₀ + θ₀^Tx + z_t, or v(x) = μ₀^Tx̃ + z_t here z_t are marketing shocks (noises) z_t drawn i.i.d. from a distribution with 0-mean and CDF F F is known to us
Achieve- -able	 μ₀ ∈ Ω = {μ ∈ ℝ^{d+1}: μ ₀ ≤ s₀, μ ₁ ≤ W} s₀ is a sparsity factor, and s₀ = d + 1 in a dense case

Department of Computer Science

Technical Assumptions

- Assumption 2.1: The noise CDF F(v) is:
 - Known!
 - strictly increasing;
 - F(v) and (1 F(v)) are both log-concave w.r.t. v.
 - E.g.: normal, uniform, Laplace, exponential, logistic,...
- Assumption 2.2: The distribution \mathbb{P}_X satisfies:

•
$$\mathbb{E}_{x_t \sim \mathbb{P}_X}[x_t] = 0, \forall t = 1, 2, ..., T, ...;$$

- Normalized by α_0
- $\Sigma = \mathbb{E}_{x_t \sim \mathbb{P}_X}[x_t x_t^T]$ with any singular value $C_{\min} \le \sigma_i \le C_{\max}$ • Here $C_{\max} \ge 1 \ge C_{\min} > 0$ are constants.

Department of Computer Science

Greedy function g(v)

• Reward is random, so we maximize its expectation.

•
$$\mathbb{E}[r_t(p)] = p \cdot \left(1 - F(p - \mu_0^T \tilde{x}_t)\right)$$

• Define
$$g(v) \triangleq argmax_p p \cdot (1 - F(p - v))$$
.
• A greedy pricing function.

• Therefore,
$$p_t^* = g(\mu_0^T \tilde{x}_t)$$
.

UC SANTA BARBARA

Department of Computer Science

Expected Regret

• We define the expected regret as:

$$\mathsf{Regret}_{\pi}(T) \equiv \max_{\substack{\mu_0 \in \Omega \\ \mathbb{P}_X \in Q(\mathcal{X})}} \mathbb{E}\left[\sum_{t=1}^T \left(p_t^* \mathbb{I}(v_t \ge p_t^*) - p_t \mathbb{I}(v_t \ge p_t)\right)\right]$$

• This is a worst-case regret w.r.t. μ_0 and \mathbb{P}_X

UC SANTA BARBARA

Department of Computer Science

Main Results

- An algorithm of O(s₀ log d · log T) regret.
 Under Assumption 2.1 and 2.2
- A lower bound of $\Omega(s_0(\log d + \log T))$.
- They are almost matching.

Recap: notations

Notation	Definition
x_t, \tilde{x}_t	Feature vector; x_t padding an "1"
p, p _t , v _t	Price; price proposed at time t ; valuation at time t
θ_0, μ_0	Valuation parameter; $ heta_0$ padding an $lpha_0$
Z _t	Noise
r_t, y_t	Reward ($r_t = p_t \cdot y_t$); decision (buy: 1; not buy: 0)
<i>F</i> , <i>f</i>	Noise CDF; noise PDF
<i>s</i> ₀	Sparsity
Σ , C_{\max} , C_{\min}	$\Sigma \triangleq \mathbb{E}[xx^T]$, with $C_{\max}I_d \ge \Sigma \ge C_{\min} > 0$
g(v)	$g(v) \triangleq argmax_p p \cdot (1 - F(p - v))$
p_t^*	$p_t^* \triangleq g(\mu_0^T \tilde{x}_t)$
\mathbb{P}_X , \mathcal{X}	Distribution of x; support of \mathbb{P}_X
Ω, W	Parameter domain, ℓ_1 -norm-bound of any parameter

Idea of Algorithm Designing

- Max likelihood estimator (MLE)
 - A well-parameterized model
- Greedy policy
 - Make best use of estimators
- Doubling Episodes
 - Fewer parameter updates
 - Easier analysis ...
- Regularization parameter
 - Promote sparsity structure in the estimated parameter

Maximum Likelihood Estimation

• The negative log-likelihood function:

$$\begin{split} \mathcal{L}(\mu) &= -\frac{1}{n} \sum_{t=1}^{n} \mathbb{I}(y_t = 1) \log \Bigl(1 - F(p_t - \tilde{x}_t^T \mu) \Bigr) \\ &+ \mathbb{I}(y_t = 0) \log \Bigl(F(p_t - \tilde{x}_t^T \mu) \Bigr) \end{split}$$

- Strongly convex with high probability.
 - (See Proposition A.2.)

Greedy Policy

• Define $g(v) \triangleq argmax_p \mathbb{E}[r_t(p)]$ = $argmax_p p \cdot (1 - F(p - v)).$

•
$$p_t^* = g(\mu_0^T \tilde{x}_t).$$

- We assume $p_t = g(\tilde{x}_t^T \mu_t)$ for some μ_t , without losing generality.
 - If μ_t is approaching μ_0 then the regret will be small.

Doubling Episodes

• The first episode: $\tau_1 = 0$, no periods.

• Initialize all parameters to 0.

• For
$$k = 2,3, ..., \text{ let } \tau_k = 2^{k-1}$$

- Within each episode, we adopt the same μ_k .
 - Remember our pricing policy: $p_t = g(\tilde{x}_t^T \mu_t)$ for some μ_t

 $t = 1, 2, \dots, \tau_{k-1}$

where $\mathcal{L}(\mu)$ being negative log-likelihood

UC SANTA BARBARA

Department of Computer Science

Algorithm 1: RMLP

Input: (at time 0) function g, regularizations λ_k , W (bound on $\|\mu_0\|_1$), Input: (arrives over time) covariate vectors $\{\tilde{x}_t\}_{t\in\mathbb{N}}$ Output: prices $\{p_t\}_{t\in\mathbb{N}}$

1:
$$\tau_1 \leftarrow 1, p_1 \leftarrow 0, \, \widehat{\mu}^1 \leftarrow 0$$

- 2: for each episode $k = 2, 3, \ldots$ do
- 3: Set the length of k-th episode: $\tau_k \leftarrow 2^{k-1}$.
- 4: Update the model parameter estimate $\hat{\mu}^k$ using the regularized ML estimator obtained from observations in the previous episode:

$$\widehat{\mu}^k = \underset{\|\mu\|_1 \le W}{\operatorname{arg\,min}} \left\{ \mathcal{L}(\mu) + \lambda_k \|\mu\|_1 \right\}$$
(8)

with

$$\mathcal{L}(\mu) = -\frac{1}{\tau_{k-1}} \sum_{t=\tau_{k-1}}^{\tau_k - 1} \left\{ \mathbb{I}(y_t = 1) \log(1 - F(p_t - \mu \cdot \tilde{x}_t)) + \mathbb{I}(y_t = -1) \log(F(p_t - \mu \cdot \tilde{x}_t)) \right\}$$
(9)

5: For each period t during the k-th episode, set

$$p_t \leftarrow g(\hat{\mu}^k \cdot \tilde{x}_t) \tag{10}$$

Algorithm 1: RMLP policy for dynamic pricing

UC SANTA BARBARA

Department of Computer Science

Parameter λ_k Chosen

• λ_k constraints the ℓ_1 –norm of the estimator $\hat{\mu}^k$

• We select
$$\lambda_k = 4u_W \sqrt{\frac{\log d}{\tau_{k-1}}}$$
, where
 $u_W = \max\{\log' F(-2W), -\log'(1 - F(2W))\}.$

Remember that $\|\mu\|_1 \leq W$.

Remarks on RMLP

- Deterministic
 - Exploitation by greedy policy $g(\mu^T \tilde{x})$
 - Exploration naturally through random x_t and z_t
- Oblivious
 - Only rely on data from previous episode
 - Remark: previous episode is half as large as the whole
 - Suitable for perishable data
- Efficient
 - Fewer updates of estimators
- Low regret

Department of Computer Science

Regret Analysis – Main Idea

• Step 1: bound estimation error $\|\hat{\mu} - \mu_0\|_2$

- Tool 1: $\mathcal{L}(\hat{\mu}_t) + \lambda \|\hat{\mu}_t\|_1$ is **optimal**;
- Tool 2: $\mathcal{L}(\mu)$ is **concentrated** (Azuma-Hoeffding);
- Tool 3: $\mathcal{L}(\mu)$ is strongly convex $(\mathbb{E}[x_t x_t^T] \ge C_{\min} \cdot I \ge 0);$
- Step 2: bound pricing difference $|p_t^* p_t|$
 - Tool 4: g is Lipschitz;

• $p_t^* - p_t = g(\tilde{x}_t^T \mu_0) - g(\tilde{x}_t^T \hat{\mu}) \le |\tilde{x}_t^T (\hat{\mu} - \mu_0)|.$

- Step 3: bound reward difference $r_t(p_t^*) r_t(p_t)$
 - Tool 5: $r_t(p) = p(1 F(p \tilde{x}_t^T \mu_0))$ is strongly convex;
 - $r_t(p_t^*) r_t(p_t) = O((p_t^* p_t)^2).$

Bound estimation error $\|\hat{\mu} - \mu_0\|_2$

Proposition 8.1 (Estimation Error). Consider linear model (1) with $\mu_0 = (\theta_0, \alpha_0) \in \Omega$, under Assumptions 2.1 and 2.2. Let $\hat{\mu}$ be the solution of optimization problem (33) with $\lambda \geq 4u_W \sqrt{(\log d)/n}$. Then, there exist positive constants c_0 and C such that, for $n \ge c_0 s_0 \log(d)$, the following inequality holds with probability at least $1 - 1/d - 2e^{-n/(c_0 s_0)}$:

$$\|\widehat{\mu} - \mu_0\|_2^2 \le \frac{16s_0\lambda^2}{\ell_W^2 C_{\min}^2} \,. \tag{35}$$

Proposition 8.3. Under assumptions of Proposition 8.1, there exist constants $c, c_1 > 0$, such that for $n \geq c_1 d$, the following holds true:

$$\mathbb{E}(\|\widehat{\mu} - \mu_0\|_2^2) \le \frac{16(s_0 + 1)\lambda^2}{\ell_W^2 C_{\min}^2} + 4W^2 e^{-cn^2}.$$
(37)

Therefore, we may divide n into 3 cases:

- $1 \le n < c_0 s_0 \log(d)$ (where *n* is small)

• $c_0 s_0 \log(d) \le n < c_1 d$ (where *n* trades off with δ) (where n is large but δ is small)

Department of Computer Science

• $n \ge c_1 d$

Main idea of Proposition 8.1 & 8.3

• Second-order Taylor expansion of $\mathcal{L}(\mu)$:

 $\mathcal{L}(\mu_0) - \mathcal{L}(\widehat{\mu}) = -\langle \nabla \mathcal{L}(\mu_0), \widehat{\mu} - \mu_0 \rangle - \frac{1}{2} \langle \widehat{\mu} - \mu_0, \nabla^2 \mathcal{L}(\widetilde{\mu})(\widehat{\mu} - \mu_0) \rangle$

• Red circle is bounded by

 $\mathcal{L}(\widehat{\mu}) + \lambda \|\widehat{\mu}\|_1 \le \mathcal{L}(\mu_0) + \lambda \|\mu_0\|_1$

- and then by triangular inequalities (parameterized by s_0).
- Blue circle is bounded by concentration inequality

$$\nabla \mathcal{L}(\mu) = \frac{1}{n} \sum_{t=1}^{n} \xi_t(\mu) \tilde{x}_t$$

• Black circle **bounds** the quadratic error:

•
$$\nabla^2 \mathcal{L}(\mu) \ge \frac{\ell_W}{n} \tilde{X}^T \tilde{X}$$

• $\mathbb{E}[xx^T] \ge C_{\min} I$

Proof details

• See liveboard...

23

Recap- RMLP

Assumption

- I.I.D. features
- Parameterized linear model
 - Feasible domain
- Known F
- Upper & Lower bounds on $\mathbb{E}[xx^T]$

Design

- Episodes
- MLE
- Regularizor
- Greedy

Proof

- Bound estimation error
 - 2nd –order Taylor expansion
 - Hoeffding Concentration
 - Strong convexity
 - Support set
 - Triangular inequality
- Bound price difference
 - In the same order of estimation
 error
 - •
- Bound regret
 - Quadratic to the pricing difference

Lower bound on regret $\Omega(s_0 \log T)$

- Suppose we can observe v_t in each round...
 - For each time: $\mathbf{v}_t = \tilde{\mathbf{x}}_t^T \mu_0 + z_t$

• A linear regression!

What is the lower bound of online linear regression?

Lower bound on regret $\Omega(\log T)$

• Assume $z_t \sim \mathcal{N}(0, \sigma^2)$, and we have:

$$\min_{\pi \in \Pi} \mathsf{Regret}_{\pi}(T) \ge C' \left\{ s_0 \log \left(\frac{T}{s_0}\right) + \min \left[\frac{T}{s_0}, s_0 \log \left(\frac{d}{s_0}\right)\right] \right\}.$$

(Theorem 5.1)Key theorem towards the lower bound.

Lower bound on regret $\Omega(\log T)$

General idea: Reductions

- Minimax regret \rightarrow minimax estimation error
- Estimation error \rightarrow distinguish in a δ -packing parameter set
 - Far enough to enlarge regret
 - Close enough to hardly distinguish
 - Le Cam's method
- Lower bound the error probability of distinguish
 Fano's Inequality

Fano's Inequality

• Fano's Lemma:

Lemma 11 (Fano) Let $X_1, \ldots, X_n \sim P$ where $P \in \{P_1, \ldots, P_N\}$. Let ψ be any function of X_1, \ldots, X_n taking values in $\{1, \ldots, N\}$. Let $\beta = \max_{j \neq k} \mathsf{KL}(P_j, P_k)$. Then

$$\frac{1}{N}\sum_{j=1}^{N} P_j(\psi \neq j) \ge \left(1 - \frac{n\beta + \log 2}{\log N}\right).$$

Intuition:

- LHS: Probability of incorrectly distinguishing (estimating) the distribution
- RHS: a high probability
 - Increases as N goes larger
 - Decreases as KL-divergence goes larger

Discussion: Why not $\Omega(\sqrt{T})$?

- An $\Omega(\sqrt{T})$ regret is necessary for generic stochastic/adverserial contextual bandit problems.
- A "separability assumption" will reduce it to $\Omega(\log T)$:
 - Constant reward gap between the best and the second best actions.
 - Pricing is continuous and thus NOT separable!
- Which assumption(s) leads to this logarithmic regret?

- Linearity?
- Parametrization?
- Known noise distribution?
- Stochastic feature?
- • $C_{\min} > 0$?

Linearity? ----- NO.

• A nonlinear model:

$$v(x_t) = \psi(\theta_0 \cdot \phi(x_t) + \alpha_0 + z_t),$$

• Theorem 6.3:

Theorem 6.3. Let ψ be log-concave and strictly increasing. Suppose that Assumptions 2.1 and 6.1 (or its alternative, Assumption 6.2) hold. Then, regret of the RMLP policy described as Algorithm 2 is of $O(s_0 \log d \cdot \log T)$.

• Assumption 6.1: define
$$\Sigma_{\phi} \coloneqq \mathbb{E}[\phi(x)\phi(x)^T]$$
, and then $C_{\max} \cdot I \ge \Sigma_{\phi} \ge C_{\min} \cdot I > 0$.

Department of Computer Science

Parametrization? -----Yes.

- For totally non-parametrized model, it is at least as hard as contextual bandits.
 - $\Omega(\sqrt{T})$ regret is necessary
 - maybe not sufficient, due to an infinite action set.

32

Noise Distribution? -----Yes.

• A theorem in [BR12]:

Theorem 3.1 (General Regret Lower Bound). Define a problem class $C_{\text{GenLB}} = (\mathcal{P}, \mathcal{Z}, d)$ by letting $\mathcal{P} = [3/4, 5/4], \mathcal{Z} = [1/3, 1], and d(p; z) = 1/2 + z - zp$. Then for any policy ψ setting prices in \mathcal{P} , and any $T \geq 2$, there exists a parameter $z \in \mathcal{Z}$ such that

 $\operatorname{Regret}(z, \mathcal{C}_{\mathsf{GenLB}}, T, \psi) \geq \frac{\sqrt{T}}{48^3}$.

• Is $O(\sqrt{T})$ achievable in our linear setting?

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice model. *Operations Research*, 60(4), 965-980. Department of Computer Science

• Theorem 7.1

Theorem 7.1. Consider the valuation model (1), where noises z_t are generated from a distribution $F_{m,\sigma}$, with unknown mean m and variance σ^2 . Under Assumption 2.2 and assuming that distribution $F_{m,\sigma}$ satisfies Assumption 2.1, the regret of RMLP-2 policy is of $O(s_0(\log d)\sqrt{T})$. Further, regret of any pricing policy in this case is $\Omega(\sqrt{T})$.

UC SANTA BARBARA

34

Algorithm: RMLP-2

Input: Pricing function g (corresponding to $F_{0,1}$), regularizations λ_k , W (bound on $\|\mu_0\|_1$) Input: (arrives over time) covariate vectors $\{\tilde{x}_t = (x_t, 1)\}_{t \in \mathbb{N}}$ Output: prices $\{p_t\}_{t \in \mathbb{N}}$

- 1: for each episode $k = 1, 2, \ldots$ do
- 2: For the first period of the episode, offer the price uniformly at random from [0, 1].
- 3: Denote by \mathcal{A}_k the set of first periods in episodes $1, \ldots, k$.
- 4: Update the model parameter estimate $\hat{\mu}^k$ using the regularized ML estimator:

$$(\widehat{\mu}^k, \widehat{\beta}^k) = \underset{\|(\mu/\beta, \beta)\|_1 \le W}{\arg\min} \left\{ \mathcal{L}(\beta, \mu) + \lambda_k \|\mu\|_1 \right\}$$
(25)

with

$$\mathcal{L}(\mu,\beta) = -\frac{1}{k} \sum_{t \in \mathcal{A}_k} \left\{ \mathbb{I}(y_t = 1) \log(1 - F(\beta p_t - \mu \cdot \tilde{x}_t)) + \mathbb{I}(y_t = -1) \log(F(\beta p_t - \mu \cdot \tilde{x}_t)) \right\}$$
(26)

5: For each period t during the k-th episode, set

$$p_t \leftarrow \frac{1}{\widehat{\beta}^k} g(\widehat{\mu}^k \cdot \widetilde{x}_t) \tag{27}$$

Algorithm 3: RMLP-2 policy for dynamic pricing

Department of Computer Science

Stochastic feature? ----- Not sure.

- In [CLPL16], the features are adversarial.
- They achieves $O(T^{\frac{2}{3}})$ regret, based on EXP4.

• This seems suboptimal.

Cohen, M. C., Lobel, I., & Paes Leme, R. (2020). Feature-based dynamic pricing. *Management Science*.

Department of Computer Science

$C_{\min} > 0$? ----- No.

- In this paper a C_{\min} helps prove $O(\log T)$ regret.
 - Without C_{\min} , an $O(\sqrt{T})$ regret bound is guaranteed, but not necessary.

Theorem 4.2. Suppose that product feature vectors are generated independently from a probability distribution \mathbb{P}_X with a bounded support $\mathcal{X} \in \mathbb{R}^d$. Under Assumption 2.1, the regret of RMLP policy is of $O(\sqrt{(\log d)T})$.

• In our new works, we proved an $O(\log T)$ regret without C_{\min} .

Recap: which qualifies $\Omega(\sqrt{T})$?

- •Linearity?
- Parametrization?
- Known noise distribution?
- Stochastic feature?

• $C_{\min} > 0$?

Main Results

- Problem: dynamic pricing in high-dimensional features.
 - Linear valuation
 - Random feature
 - Known and fixed noise distribution
- Algorithm: RMLP
 - \bullet Max likelihood estimator with $\ell_1\text{-}\text{regularizor}$
 - Episode-based greedy policy
 - Computationally efficient
 - Easy to analysis (avoiding martingale concentrations)
 - Upper regret bound: $O(s_0 \log d \cdot \log T)$
- Lower regret bound: $\widetilde{\Omega}(s_0 \log T)$
- Nonlinear cases: $O(s_0 \log d \cdot \log T)$
- Unknown noise distribution
 - Parametrized: $\mathit{O}(\sqrt{T})$ and $\Omega(\sqrt{T})$
 - Unparametrized: $O(\delta T)$

Next Steps

- Proposed by the authors:
 - A tighter bound of upper & lower regret
 - μ_0 (or θ_0) is not sparse but close to a sparse vector.
 - Multiple-product sales at a time.
- Proposed by ourselves:
 - Dynamic regret, and adaptive regret
 - Adversarial features
 - Is it still O(logT)?
 - Totally unparametrized model
 - Is if $\Omega(\sqrt{T})$ or $\Omega(T^{\frac{2}{3}})$?
 - Is it harder than contextual bandits?