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What’s dynamic pricing?

+ $1 =

+ $100 =

+ ? =
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Problem Setting
For 𝑡 = 1,2, … , 𝑇:

• The nature chooses a feature 𝑥𝑡;

• The firm observes 𝑥𝑡;

• The firm proposes a 
price 𝑝𝑡 = 𝜋𝑡 𝑥𝑡 ;

• The firm receives a 
reward 𝑟𝑡 = 𝑝𝑡 ⋅ 𝑦𝑡

• The customer observes 𝑥𝑡;

• The customer valuates the 
product as 𝑣𝑡(𝑥𝑡)

• The customer compares 𝑝𝑡
and 𝑣𝑡, and decides 𝑦𝑡 =
𝕀(𝑣𝑡 ≥ 𝑝𝑡);
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Recap: Contextual Bandit

https://www.cs.columbia.edu/~djhsu/papers/ilovetoconbandits-slides.pdf
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Basic Assumptions

• 𝑥𝑡 ∼ ℙ𝑋 ⊂ ℝ𝑑 independently and identically;
• ℙ𝑋 is unknown to us

• ℙ𝑋 is supported by a bounded set 𝒳.

• 𝑣𝑡 𝑥 = 𝛼0 + 𝜃0
𝑇𝑥 + 𝑧𝑡, or 𝑣 𝑥 = 𝜇0

𝑇 ෤𝑥 + 𝑧𝑡
• here 𝑧𝑡 are marketing shocks (noises)

• 𝑧𝑡 drawn i.i.d. from a distribution with 0-mean and CDF 𝐹

• 𝐹 is known to us

• 𝜇0 ∈ Ω = {𝜇 ∈ ℝ𝑑+1: 𝜇 0 ≤ 𝑠0, 𝜇 1 ≤ 𝑊}
• 𝑠0 is a sparsity factor, and 𝑠0 = 𝑑 + 1 in a dense case

I.I.D.

Linear

Achieve-
-able
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Technical Assumptions

•Assumption 2.1: The noise CDF 𝐹 𝑣 is:
• Known!

• strictly increasing;

• 𝐹 𝑣 and 1 − 𝐹 𝑣 are both log-concave w.r.t. 𝑣.

• E.g.: normal, uniform, Laplace, exponential, logistic,…

•Assumption 2.2: The distribution ℙ𝑋 satisfies:
• 𝔼𝑥𝑡∼ℙ𝑋 𝑥𝑡 = 0, ∀ 𝑡 = 1,2,… , 𝑇, …;

• Normalized by 𝛼0
• Σ = 𝔼𝑥𝑡∼ℙ𝑋 𝑥𝑡𝑥𝑡

𝑇 with any singular value 𝐶min ≤ 𝜎𝑖 ≤ 𝐶max

• Here 𝐶max ≥ 1 ≥ 𝐶min > 0 are constants.
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Recap: settings
For 𝑡 = 1,2, … , 𝑇:

• Samples 𝑥𝑡 ∼ ℙ𝑋, i.i.d.

• The firm observes 𝑥𝑡;

• Proposes a price 𝑝𝑡 =
𝜋𝑡 𝑥𝑡 ;

• Receives a reward 𝑟𝑡 =
𝑝𝑡 ⋅ 𝑦𝑡

• 𝔼 𝑟𝑡|𝑥𝑡, 𝑝𝑡 = 𝑝𝑡 1 − 𝐹 𝑝𝑡 − 𝑥𝑡
𝑇𝜇0

• The customer observes 𝑥𝑡;

• Valuates the product as 
𝑣𝑡 𝑥𝑡 = 𝑥𝑡

𝑇𝜇0 + 𝑧𝑡
• Compares 𝑝𝑡 and 𝑣𝑡, and 

decides 𝑦𝑡 = 𝕀(𝑣𝑡 ≥ 𝑝𝑡);

• ℙ 𝑦𝑡 = 1 = 1 − 𝐹 𝑝𝑡 − 𝑥𝑡
𝑇𝜇0
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Greedy function 𝒈 𝒗

• Reward is random, so we maximize its expectation.

• 𝔼 𝑟𝑡 𝑝 = 𝑝 ⋅ 1 − 𝐹 𝑝 − 𝜇0
𝑇 ෤𝑥𝑡

• Define 𝑔 𝑣 ≜ 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 𝑝 ⋅ 1 − 𝐹 𝑝 − 𝑣 .
• A greedy pricing function.

• Therefore, 𝑝𝑡
∗ = 𝑔(𝜇0

𝑇 ෤𝑥𝑡).
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Expected Regret

• We define the expected regret as:

• This is a worst-case regret w.r.t. 𝜇0 and ℙ𝑋
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Main Results

•An algorithm of 𝑂(𝑠0 log 𝑑 ⋅ log 𝑇) regret.
• Under Assumption 2.1 and 2.2

•A lower bound of Ω 𝑠0 log 𝑑 + log 𝑇 .

• They are almost matching.
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Recap: notations
Notation Definition

𝑥𝑡, ෤𝑥𝑡 Feature vector; 𝑥𝑡 padding an “1”

𝑝, 𝑝𝑡, 𝑣𝑡 Price; price proposed at time 𝑡; valuation at time 𝑡

𝜃0, 𝜇0 Valuation parameter; 𝜃0 padding an 𝛼0

𝑧𝑡 Noise

𝑟𝑡, 𝑦𝑡 Reward (𝑟𝑡 = 𝑝𝑡 ⋅ 𝑦𝑡); decision (buy: 1; not buy: 0)

𝐹, 𝑓 Noise CDF; noise PDF

𝑠0 Sparsity

Σ, 𝐶max, 𝐶min Σ ≜ 𝔼 𝑥𝑥𝑇 , with 𝐶max𝐼𝑑 ≽ Σ ≽ 𝐶min > 0

𝑔 𝑣 𝑔 𝑣 ≜ 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 𝑝 ⋅ 1 − 𝐹 𝑝 − 𝑣

𝑝𝑡
∗ 𝑝𝑡

∗ ≜ 𝑔 𝜇0
𝑇 ෤𝑥𝑡

ℙ𝑋, 𝒳 Distribution of 𝑥; support of ℙ𝑋

Ω, 𝑊 Parameter domain, ℓ1-norm-bound of any parameter 
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Idea of Algorithm Designing

• Max likelihood estimator (MLE)
• A well-parameterized model

• Greedy policy
• Make best use of estimators

• Doubling Episodes
• Fewer parameter updates

• Easier analysis …

• Regularization parameter
• Promote sparsity structure in the estimated parameter
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Maximum Likelihood Estimation

• The negative log-likelihood function:

ℒ 𝜇 = −
1

𝑛
෍

𝑡=1

𝑛

𝕀 𝑦𝑡 = 1 log 1 − 𝐹 𝑝𝑡 − ෤𝑥𝑡
𝑇𝜇

+𝕀 𝑦𝑡 = 0 log 𝐹 𝑝𝑡 − ෤𝑥𝑡
𝑇𝜇

• Strongly convex with high probability. 
• (See Proposition A.2.)
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Greedy Policy

• Define 𝑔 𝑣 ≜ 𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝔼 𝑟𝑡 𝑝
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 𝑝 ⋅ 1 − 𝐹 𝑝 − 𝑣 .

• 𝑝𝑡
∗ = 𝑔(𝜇0

𝑇 ෤𝑥𝑡).

• We assume 𝑝𝑡 = 𝑔 ෤𝑥𝑡
𝑇𝜇𝑡 for some 𝜇𝑡, without losing 

generality.
• If 𝜇𝑡 is approaching 𝜇0 then the regret will be small.
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Doubling Episodes

• The first episode: 𝜏1 = 0, no periods.
• Initialize all parameters to 0.

• For 𝑘 = 2,3,…, let 𝜏𝑘 = 2𝑘−1.

• Within each episode, we adopt the same 𝜇𝑘.
• Remember our pricing policy: 𝑝𝑡 = 𝑔 ෤𝑥𝑡

𝑇𝜇𝑡 for some 𝜇𝑡
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Algorithm 1: RMLP (Regularized Maximum Likelihood Pricing)

Double 
episodes: 
𝜏𝑘 =
2𝑘−1

Update parameter: 

where ℒ 𝜇 being 
negative log-likelihood

Price greedily: 

𝑝𝑡
= 𝑔 ෤𝑥𝑡

𝑇 Ƹ𝜇𝑘

ො𝜇𝑘 = arg min
𝜇 1≤𝑊

ℒ 𝜇 + 𝜆𝑘 𝜇 1

𝑡 = 1,2, … , 𝜏𝑘−1

𝑡 = 𝜏𝑘
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Algorithm 1: RMLP

ො𝜇𝑘 = arg min
𝜇 1≤𝑊

ℒ 𝜇 + 𝜆𝑘 𝜇 1
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Parameter 𝝀𝒌 Chosen

• 𝜆𝑘 constraints the ℓ1 −norm of the estimator Ƹ𝜇𝑘

• We select 𝜆𝑘 = 4𝑢𝑊
log 𝑑

𝜏𝑘−1
, where

𝑢𝑊 = max log ′ 𝐹 −2𝑊 ,− log ′ 1 − 𝐹 2𝑊 .

Remember that 𝜇 1 ≤ 𝑊.
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Remarks on RMLP

•Deterministic
• Exploitation by greedy policy 𝑔 𝜇𝑇 ෤𝑥
• Exploration naturally through random 𝑥𝑡 and 𝑧𝑡

•Oblivious
• Only rely on data from previous episode

• Remark: previous episode is half as large as the whole

• Suitable for perishable data

•Efficient
• Fewer updates of estimators

•Low regret



Department of Computer Science

20

Regret Analysis – Main Idea

• Step 1: bound estimation error Ƹ𝜇 − 𝜇0 2
• Tool 1: ℒ ො𝜇𝑡 + 𝜆 ො𝜇𝑡 1 is optimal;

• Tool 2: ℒ 𝜇 is concentrated (Azuma-Hoeffding);

• Tool 3: ℒ 𝜇 is strongly convex (𝔼[𝑥𝑡𝑥𝑡
𝑇] ≽ 𝐶min ⋅ 𝐼 ≻ 0);

• Step 2: bound pricing difference 𝑝𝑡
∗ − 𝑝𝑡

• Tool 4: 𝑔 is Lipschitz;

• 𝑝𝑡
∗ − 𝑝𝑡 = 𝑔 ෤𝑥𝑡

𝑇𝜇0 − 𝑔 ෤𝑥𝑡
𝑇 ො𝜇 ≤ ෤𝑥𝑡

𝑇 ො𝜇 − 𝜇0 .

• Step 3: bound reward difference 𝑟𝑡 𝑝𝑡
∗ − 𝑟𝑡 𝑝𝑡

• Tool 5: 𝑟𝑡 𝑝 = 𝑝(1 − 𝐹(𝑝 − ෤𝑥𝑡
𝑇𝜇0)) is strongly convex;

• 𝑟𝑡 𝑝𝑡
∗ − 𝑟𝑡 𝑝𝑡 = 𝑂 𝑝𝑡

∗ − 𝑝𝑡
2 .
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Bound estimation error Ƹ𝜇 − 𝜇0 2

Therefore, we may divide 𝑛 into 3 cases:

• 1 ≤ 𝑛 < 𝑐0𝑠0 log 𝑑 (where 𝑛 is small)

• 𝑐0𝑠0 log 𝑑 ≤ 𝑛 < 𝑐1𝑑 (where 𝑛 trades off with 𝛿)

• 𝑛 ≥ 𝑐1𝑑 (where 𝑛 is large but 𝛿 is small)
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Main idea of Proposition 8.1 & 8.3

• Second-order Taylor expansion of ℒ 𝜇 :

• Red circle is bounded by

• and then by triangular inequalities (parameterized by 𝑠0).

• Blue circle is bounded by concentration inequality

• Black circle bounds the quadratic error:

• ∇2ℒ 𝜇 ≽
ℓ𝑊

𝑛
෨𝑋𝑇 ෨𝑋

• 𝔼 𝑥𝑥𝑇 ≽ 𝐶min𝐼



Department of Computer Science

23

Proof details

• See liveboard…
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Recap- RMLP

Assumption
• I.I.D. features

• Parameterized linear 

model
• Feasible domain

• Known 𝐹
• Upper & Lower 

bounds on 𝔼 𝑥𝑥𝑇

Proof
• Bound estimation error

• 2nd –order Taylor expansion

• Hoeffding Concentration

• Strong convexity
• Support set

• Triangular inequality

• Bound price difference
• In the same order of estimation 

error

•

• Bound regret
• Quadratic to the pricing 

difference

Design
• Episodes

• MLE

• Regularizor

• Greedy
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•Suppose we can observe 𝑣𝑡 in each 
round…
• For each time: vt = ෤𝑥𝑡

𝑇𝜇0 + 𝑧𝑡
• A linear regression!

•What is the lower bound of online linear 
regression?

Lower bound on regret 𝛀 𝒔𝟎𝐥𝐨𝐠𝐓
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•Assume 𝑧𝑡 ∼ 𝒩 0, 𝜎2 , and we have:

(Theorem 5.1)

•Key theorem towards the lower bound.

Lower bound on regret 𝛀 𝐥𝐨𝐠𝐓
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Lower bound on regret 𝛀 𝐥𝐨𝐠𝐓

General idea: Reductions

•Minimax regret → minimax estimation error

•Estimation error → distinguish in a 𝜹-packing 
parameter set
• Far enough to enlarge regret
• Close enough to hardly distinguish
• Le Cam’s method

•Lower bound the error probability of distinguish
• Fano’s Inequality
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Fano’s Inequality

• Fano’s Lemma:

Intuition: 

• LHS: Probability of incorrectly distinguishing 
(estimating) the distribution

• RHS: a high probability
• Increases as N goes larger

• Decreases as KL-divergence goes larger
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Discussion: Why not 𝛀 𝑻 ?

• An Ω 𝑇 regret is necessary for generic 
stochastic/adverserial contextual bandit problems.

• A “separability assumption” will reduce it to Ω log 𝑇 :
• Constant reward gap between the best and the second best 

actions.

• Pricing is continuous and thus NOT separable!

• Which assumption(s) leads to this logarithmic regret?
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•Linearity?

•Parametrization?

•Known noise distribution?

•Stochastic feature?

•𝐶min > 0?

Which assumption qualifies 𝛀 𝑻 ?
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Linearity?   ------ NO.

•A nonlinear model:

• Theorem 6.3:

• Assumption 6.1: define Σ𝜙 ≔ 𝔼 𝜙 𝑥 𝜙 𝑥 𝑇 , and then 
𝐶max ⋅ 𝐼 ≽ Σ𝜙 ≽ 𝐶min ⋅ 𝐼 ≻ 0.

Which assumption qualifies 𝛀 𝑻 ?
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Parametrization? ------Yes.

•For totally non-parametrized model, it is at 
least as hard as contextual bandits.
• Ω 𝑇 regret is necessary

• maybe not sufficient, due to an infinite action 
set.

Which assumption qualifies 𝛀 𝑻 ?
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Noise Distribution?     ------Yes.

•A theorem in [BR12]：

• Is 𝑂 𝑇 achievable in our linear setting?

Which assumption qualifies 𝛀 𝑻 ?

Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice 
model. Operations Research, 60(4), 965-980.
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• Theorem 7.1

Which assumption qualifies 𝛀 𝑻 ?
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Algorithm: RMLP-2
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Stochastic feature?  ------ Not sure.

• In [CLPL16], the features are adversarial.

• They achieves 𝑂(𝑇
2

3) regret, based on EXP4.
• This seems suboptimal.

Which assumption qualifies 𝛀 𝑻 ?

Cohen, M. C., Lobel, I., & Paes Leme, R. (2020). Feature-based dynamic 
pricing. Management Science.
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𝐶min > 0?   ------ No.

• In this paper a 𝐶min helps prove 𝑂 log 𝑇
regret.
• Without 𝐶min, an 𝑂 𝑇 regret bound is 

guaranteed, but not necessary.

• In our new works, we proved an 𝑂 log 𝑇
regret without 𝐶min.

Which assumption qualifies 𝛀 𝑻 ?
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•Linearity?

•Parametrization?

•Known noise distribution?

•Stochastic feature?

•𝐶min > 0?

Recap: which qualifies 𝛀 𝑻 ?
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Conclusion
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Main Results
• Problem: dynamic pricing in high-dimensional features.

• Linear valuation

• Random feature

• Known and fixed noise distribution

• Algorithm: RMLP
• Max likelihood estimator with ℓ1-regularizor

• Episode-based greedy policy
• Computationally efficient

• Easy to analysis (avoiding martingale concentrations)

• Upper regret bound: 𝑂 𝑠0 log 𝑑 ⋅ log𝑇

• Lower regret bound: ෩Ω 𝑠0 log 𝑇

• Nonlinear cases: 𝑂(𝑠0 log 𝑑 ⋅ log 𝑇 )

• Unknown noise distribution
• Parametrized: 𝑂 𝑇 and Ω 𝑇

• Unparametrized: 𝑂 𝛿𝑇
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Next Steps

• Proposed by the authors:
• A tighter bound of upper & lower regret

• 𝜇0 (or 𝜃0) is not sparse but close to a sparse vector.

• Multiple-product sales at a time.

• Proposed by ourselves:
• Dynamic regret, and adaptive regret

• Adversarial features
• Is it still 𝑂 𝑙𝑜𝑔𝑇 ?

• Totally unparametrized model

• Is it Ω 𝑇 or Ω 𝑇
2

3 ?

• Is it harder than contextual bandits?
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